
A System Designer’s Introduction to the Architecture

ANSA: A Systems Designer’s Introduction

to the

Architecture

Release RC.253.00

April 1991

This document provides an introduction to ANSA. It is specifically oriented
towards those with a software and systems background. It describes the
underlying assumptions and principles of the architecture; it does not
describe how the architecture is applied to specific application domains.

Architecture Projects Management Limited

The material in this technical report has been developed as part of
the ANSA Architecture by the ANSA Core Team in Cambridge, UK.
ANSA is currently under development in the Integrated Systems
Architecture (ISA) Project, jointly funded by the Commission of the
European Communities, DG XIII (ESPRIT 2267) and a consortium of
European and North American IT and Telecommunications
Companies. The ISA Project builds on the Advanced Networked
Systems Architecture (ANSA) Project which started in 1985 under UK
Alvey funding.

Architecture Projects Management Limited and their sponsors take
no responsibility for the consequences of errors or omissions in this
Report, nor for any damages resulting from the application of the
ideas expressed herein.

Architecture Projects Management Limited

Poseidon House
Castle Park
CAMBRIDGE
CB3 ORD
United Kingdom

TELEPHONE UK

INTERNATIONAL

FAX

UUCP

ARPA Internet

@ Copyright
Limited

1991 Architecture Projects Management

(0223) 323010
+ 44 223 323010
+44223359779
. ..ukc!ansa!apm

apm@ansaco.uk

Permission to copy without fee all or part of this material is granted
provided that notice is given that copying is by permission of
Architecture Projects Management Limited. To copy otherwise or to
republish requires specific permission.

8

9

10

11

12

Aduanced Networked Systems Architecture

CONTENTS

Page

Introduction ... 1

The problem space 3

ANSA design assumptions 5

ANSA design principles 7
4.1 Approach to separation 7
4.2 Approach to heterogeneity 8
4.3 Approach to federation 10
4.4 Approach to concurrency 12
4.5 Approach to scaling 14

Engineering structure of ANSA systems 15

Transparency services 19

Conformance ... 21
7.1 Conformance in the ANSA computational model 21
7.2 Conformance in the ANSA engineering model 23

Summary ... 25

Acknowledgements 27

Background .. 29

Standards .. 31

Related documents 33

Figures:

Figure 1: ANSA systems 15
Figure 2: Distributed nucleus components 16
Figure 3: An ANSA capsule 17
Figure 4: Computational conformance points 22
Figure 5: Engineering conformance points 24

Advanced Networked Systems Architecture

1 Introduction

ANSA is an architecture for building distributed systems which can
individually or collectively operate as a unified whole so that the fact of
distribution can be made completely transparent to application programmers
and users. This is an entirely different approach to that which is typically
assumed when networking single systems together. It allows full advantage
to be taken of the inherent concurrency and separation of distributed systems
for the provision of increased performance, decentralisation and reliability,
while better masking the disadvantages that arise from communication
errors and partial failures. It produces systems that can be managed as
coordinated sets of sub-systems appropriate to the enterprise they serve
rather than as random combinations of boxes.

Advanced Networked Systems Architecture

2 The problem space

Many of today’s computer systems are designed to work within %losed”
localised contexts, either within limited physical areas, or within limited
logical boundaries, possibly shared by other similar systems. When systems
are required to cooperate freely in “open” distributed contexts with other
dissimilar systems, both physical and logical separation can cause major
difficulties.

Problems frequently arise from trying to separate and distribute closed
systems in ad hoc ways, instead of applying the discipline of sound
engineering practice to create open distributed systems founded on a clear
understanding of carefully considered design assumptions, principles, and
structuring rules.

The purpose of this paper is to examine the design approach taken by ANSA
in addressing the technical problem space of building “integrated” open
distributed computing systems. It is recognised from the outset that such
systems may inevitably need to function in environments incorporating
heterogeneous computing elements, and that such elements may be subject
to different administrative authorities.

The paper concentrates on different aspects of the ANSA computational
model (application writers viewpoint) and the ANSA engineering model
(system builders viewpoint). Throughout the discussion reference is made to
the concept of “service” from two perspectives: (1) as an abstract
computational specification of some set of system/application functions; and
(2) as an engineering entity that animates the same functions and makes
them accessible as a service to other parts of the system.

3

I

Advanced Networked Systems Architecture

3 ANSA design assumptions

In designing systems to be implemented in a single host environment, it is
commonly the case that a number of assumptions are made which simplify
the modelling of those systems. In the presence of distribution, however,
those features from which the simplifying assumptions abstract cease to be
negligible, and must be explicitly catered for in the design models. It is
important, therefore, to identify explicitly the assumptions which are made
for non-distributed systems, and to ensure that they are absent from the
models for distributed systems.

Among the most important assumptions to be avoided are:

) Single global name space: in distributed systems, which may arise
from federation of pre-existing systems, context-relative naming
schemes are required in order to interpret names unambiguously
across different administrative boundaries

) Global shared memory: in distributed systems, global shared memory
would form a performance bottle-neck, and so is replaced by multiple,
disjoint memories.

) Global consistency: in distributed
data may converge more $10
non-distributed systems.

systems, consistency of state and
wly than state and data in

b Sequential execution: in distributed systems, execution may occur in
any and all possible orders including sequentially, concurrently, and
independently.

) Total failure: in distributed systems, the failure of one component can
lead to partial failure of other operational components participating
in services affected by the failure. Redundancy of components is thus
essential to detect and mask failures in order to allow operational
components to continue dependably. Moreover, there is a class of
partial failure modes which can only be prevented by distributed
cooperation; in particular, neither forward nor backward error
recovery performed on behalf of a particular failed component may on
its own be sufficient.

1 Synchronous interaction: in distributed systems, both asynchronous
and synchronous interactions are necessary in order to reduce
communication delay.

b Locality of interaction: in distributed systems, interactions may be
either local or remote, with consequent implications for
communication delay and reliability.

b Fixed location: in distributed systems, which may have multiple
locations, it is possible for components to move during the system
lifetime. Advantage may be taken of this to improve performance by

5

Advanced Networked Systems Architecture

co-locating some interacting services, but the processes for finding
services must be extended to cater for this.

) Direct binding: in distributed systems, indirect binding is necessary
to cater for the potential remoteness of interactions and the mobility
of services.

) Homogeneous environment: in distributed systems, there can be no
guarantee of homogeneity of components and so interacting parties
must agree on abstract rather than physical data representations.

Summaries of the design principles observed by ANSA and the way in which
they avoid these assumptions are presented below.

Advanced Networked Systems Architecture

4 ANSA design principles

It is convenient to discuss the design principles of ANSA in the context of five
key issues of distribution: separation, heterogeneity, federation, concurrency,
and scaling.

4.1 Approach to separation

Physical separation of interacting computational entities brings the need for
a general computational model for interworking.

With respect to separation, ANSA observes the following principles:

l Assume all services are remote, allowing co-location as an
optimisation

l Require each service to be entirely responsible for transforming its
encapsulated data

. Perform all interactions with services via instances of interfaces

. Allow propagation of interface references as the means of acquiring
access to seruices

l Name and report all detected interaction faults and failures

Part of the solution to separation is to assume from inception that all services
are physically or logically remote from each other, leaving the possibility of
co-location, with the potential for optimisation it yields, as an engineering
concern. This view leads to the requirement for each service to encapsulate
its data.

Another part of the solution is to ensure that the state and data of each
remote service can only be manipulated indirectly via interaction with one or
more interfaces supported and made available by the service. This approach
is similar to the programming view of manipulating data through abstract
data types.

This picture mirrors the essential properties of the ANSA computational
model in which remote services are shared by propagating interface
references between interacting parties. The components between which
service interactions occur are formulated as “computational objects”, each of
which encapsulates data and the service operations for manipulating that
data. Consequently, each object and its data are wholly contained within a
private memory space, which is disjoint to the private memory spaces of other
objects.

Specification of what each object does is primarily in terms of the services it
provides, and thus the types of its interfaces. Likewise, specification of how
an object achieves its required services may be modularised in terms of the
services they use. The technique of one service using other services can be
applied recursively to yield computational objects of extremely fine
granularity.

Advanced Networked Systems Architecture

This object model is synergistic with, but not dependent on, specific
object-oriented programming models.

A client-server relationship applies to service interactions. One object (the
server) provides one or more services to other objects (the clients). There is
prior agreement about service specifications: services conform to particular
interface types, and the interactions occur by mutual consent, and at the
initiative of the clients. The same object may participate in interactions with
many different services of the same or different interface type (concurrently
and/or consecutively, as client and/or server, and with many different
partners).

In distributed systems the physical separation of services (and their
containing objects) is unavoidable, introducing the possibility both of failures
occurring during communication and of partial failures of the services. In
order to have equivalent failure semantics to non-distributed services, the
service interaction model must allow such failures to be reported and
processed.

Service interactions therefore require multiple outcomes (each of which may
comprise multiple results). In ANSA, this approach has been integrated into
a general model for reporting different kinds of outcome. Such outcomes are
distinguished by name and are known as terminations. Connotation of
“failure”, as well as which terminations represent failure, is defined as part
of the service semantics rather than as part of the interaction model.

4.2 Approach to heterogeneity

There are variations in the design of different hardware and communications
systems which arise for a variety of reasons. Not all systems are designed to
be the same, nor is it always desirable that they should be, since there can be
benefits in diversity and specialisation. The challenge is to make such
diversity work harmoniously and to derive positive benefit from the
specialisations it provides.

To provide the flexibility to cope with inevitable variation in distributed
systems, ANSA observes the following principles:

l Assume heterogeneity and identify unnecessary diversity

l Abstract away from unnecessary diversity, while still retaining the
benefit of specialisations

l Request remote services to manipulate their encapsulated data
through interface instances

l Pass interface references rather than datapresentation syntax

Consideration of heterogeneity and the discovery of unnecessary diversity, and
the impedance that these phenomena present to interworking compatibly
across different systems, leads to the identification of the root problems: the
incompatibility of different operating system interfaces, the incompatibility
of different physical (hardware) and logical (software) data representations,
and the incompatibility of different communications protocols.

8

Advanced Networked Systems Architecture

Standards for logical data presentations and communications protocols exist,
but these in themselves produce neither sufficient nor complete solutions to
the problems of heterogeneous interworking.

These difficulties can be addressed by appealing to the principle of abstraction.

ANSA specifies an integrated platform which can be built onto existing
heterogeneous operating system environments to form the basis for
compatible interworking across dissimilar technologies. The definition of
this platform does not require or force a particular implementation, but does
require adherence to conformance on all matters of interaction between
distributed services ($7).

This architectural platform supports an object based computational model for
simplifying the way in which remote applications are structured and are
permitted to interact ($4.1); and an engineering model which specifies the
components and structuring rules for building practical realisations of the
platform (851.

Even with this platform in place, there are still other principles that must be
observed if successful interworking is to be achieved. Different data
representations imply that one system cannot manipulate data directly in
another system. Remote information must be represented abstractly. It is
important to characterise the services available, without knowing how
encapsulated data is to be transformed. The approach of read/modify/write
styles using primitive operations, as in stand alone systems, or homogeneous
networks, are inappropriate in a heterogeneous distributed system. They
result in an attempt to create a global database as a vehicle for transforming
a heterogeneous environment into a homogeneous one.

These arguments suggest that it is dangerous to present the application
writer with a data encoding scheme such as ASN.l. Use of a presentation
syntax for transporting data from one environment to another perpetuates
the view of the read/modify/write styles of data access. Moreover, there are
further problems. Cooperating applications must still agree on a
presentation syntax, and agree on the semantics of the data as information.
The ASN.l approach moves data to the processing, whereas an object based
approach moves processing to the data, requesting the responsible service to
process and transform the data wherever it happens to be.

This principle of avoiding the mechanistic view of data encoding schemes in
the computational model does not of course preclude their practical
application in the engineering model. Ultimately, systems have to be built
with agreement on the syntax and semantics of data presentations for
passing requests, parameters, and results in interactions. A standard such
as ASN.l may well be the choice for specific implementations.

The guiding principles of performing remote service interactions through
interface instances, and of propagating interface references to share services
provide a sound basis for dealing with problems of heterogeneity. All useful
diversity and specialisations can be defined as service objects and accessed
through instances of interfaces.

9

Advanced Networked Systems Architecture

4.3 Approach to federation

In large-scale distributed computing systems, the existence of centralised
ownership and universal and technical control cannot be assumed. There
will inevitably be separate sources of authority (e.g. separate enterprises,
autonomous departments, different technical policies, dissimilar
technologies, and separate administrations). In such cases, interworking can
only be achieved via cooperation in “federal” style, and not by “dictat”.

To accommodate federation of separate systems, ANSA observes the
following principles:

l Allow each system to control its own policies and services locally

. Allow cooperating systems to negotiate the sharing ofservices

l Require cooperating systems to
context-relative naming scheme

identify all available services via a

. Provide a trading facility through which federated cooperating
systems can organise and control the sharing of services

A local system cannot reliably or effectively control a remote one for all the
reasons underpinning the issues of separation and heterogeneity discussed
earlier. Furthermore, stand-alone systems are designed to meet individual
requirements, and are not deliberately built to assume non-local
administrations.

A need for interoperation between individual systems arises when it is
realised that some mutual benefit can be most effectively met by federating
them. Since the systems were not designed to fit within some agreed overall
structure, they must combine forces as cooperating peers, ideally without
impairing their individual functionality or performance.

The federation of separate systems directly affects the architectural views of
“naming” and “trading”.

4.3.1 Naming

Names are the general means of referring to entities within a system. In
information systems there are many different entities to be named, and
many different ways of naming them. Any large-scale distributed computing
system will inevitably encounter such diversity.

ANSA provides a naming model to address this issue:

) Separation of naming domains

Separate naming domains are formulated for the different kinds of
entities that can be named.

b Separation of naming conventions

Different ways of naming entities are distinguished as different
naming conventions. For each naming convention there is a defined
syntax and semantics. In an ideal world, there might be exactly one

10

Advanced Networked Systems Architecture

naming convention per naming domain; but in the real world there is
usually more than one (if only for historical reasons).

b Separation of naming contexts

There should be considerable freedom in the way in which particular
names can be associated with particular entities. Each set of
bindings between the entities in a naming domain and the names in a
name set is known as a naming context. Different naming contexts
arise for reasons of scaling and management for instance. For
consistency, each naming context must adhere to a single naming
convention. The validity of names is tested with respect to the
naming context; the name must be constructed using the naming
conventions, and a binding with an entity in the naming domain
must be defined.

b Naming networks

Some of the entities that can be named are themselves naming
contexts. Thus, it may be possible to name one naming context from
another naming context. The structure that is formed by the manner
in which naming contexts can be so linked is called a naming
network. ANSA imposes no constraints on the structure or size of the
naming network in a particular system and so allows arbitrary
administrative structures (hierarchies as well as federations) to be
reflected in the naming network.

I Path names

To name a particular entity in some domain, it may be necessary to
refer first to (i.e. name) the naming context in which the name is
valid. The name for a particular entity is thus extended by the name
of the naming context in which it is known. A path name is such an
extended name - it traces a path through the naming network.

) Name transparency

Each naming context that is named in a path name is logically
independent of all other naming contexts in the path name.
Therefore, name resolution involves successive logically independent
interpreters. For each interpreter, all other elements in the path
name are transparent, leaving unresolved names for successor
interpreters. Each name interpreter may be modelled (and
implemented) as a service object which internalises the naming
context and the naming convention concerned.

The above naming model provides an orderly basis for cooperation between
disjoint naming domains and contexts which can be separately administered
under different authorities. This arrangement is referred to as federated
naming.

11

Advanced Networked Systems Architecture

4.3.2 Trading

It was stated earlier that interface references may be obtained by clients in
response to interactions with any accessible server; and that this is the basic
method by which distributed computations naturally acquire access to
different services dynamically. However, it is also important to provide a
means by which separate clients and servers can rendezvous for the very first
time in order to allow subsequent interaction between them. In ANSA, this
process is called trading, and is available through a special service provided
to clients and servers.

Trading gives access to a graph structure that can be searched by clients via
import requests and updated by servers via export requests, qualified by
typename and optionally by property namelvalues pairs.

) Typename

A typename denotes the set of permissible interactions that a service
instance can engage in. It identifies a set of common service interface
instances.

1 Property namelvaluepairs

A set of property name/value pairs is used to help make a choice from
a set of interface instances with the same typename.

(For example, there may be several Fourier transform services, that
all calculate the same transform. The computational cost associated
with each service may vary according to the algorithm used. A client
of the service will get charged for each transformation. It must then
be possible for the client to state how much it is prepared to pay on
the basis of a choice of the most suitable Fourier transform service.)

b Typed imports and exports

Servers can export instances of interface types by typename and
property name!values to the trading service to make these instances
accessible to clients. An import operation is provided to clients so
that they can retrieve references to interface instances of the
required type.

The trading service will only search through exports of the required
type (and its subtypes) when trying to match on interface type
conformance and required service properties.

The trading service of different systems may be structured as a federation of
autonomous trading domains and managed by separate administrative
authorities.

4.4 Approach to concurrency

Assumptions made about concurrency and synchronisation mechanisms in
single host systems are frequently invalid for distributed systems. This can

12

Advanced Networked Systems Architecture

create difficulties when transporting single host applications to distributed,
possibly heterogeneous, environments.

ANSA addresses the problems of distributed concurrency and
synchronisation by observing the following principles:

l Distinguish between the computational and engineering views of
concurrency

l Require declarative expression of parallel execution and concurrency
control in the computational model

l Provide programmers with suitable linguistic tools for building
distributed applications

l Provide engineering tools to map computational specifications to
engineering mechanisms

An application writer generally assumes that his program executes serially;
that is, with a concurrency of one. It may be possible for components to
execute in parallel, but except where meeting an explicit functional
requirement, parallelism is rarely accommodated. Mechanisms to apply
parallel processing to assumed serial code, for example pipelining, have been
adopted in many systems. However, such ingenuity may not be possible with
the many processors of a distributed system. Furthermore, if specific
serialisation and synchronisation mechanisms are built into an application,
the opportunity for exploiting parallelism via distributed processors using
different mechanisms will be lost.

Distribution introduces special problems. If a server has many clients, it will
inevitably be faced with overlapped requests. If a server does not make
provision for concurrency, the delay imposed upon clients will become
excessive. Only by designing applications with the greatest scope for parallel
execution will optimal scaling characteristics be obtained.

When interacting
two options:

with a remote service, an application writer may assume

(11 synchronous service request: execution continues when the remote
activity is complete.

(2) asynchronous service request: execution proceeds in parallel with the
remote activity.

With option (21, and assuming a dependency between the interacting parties,
a synchronisation mechanism will be needed to suspend execution of the
issuing activity until completion of the remote activity. This type of
synchronisation becomes increasingly complex if several remote parallel
activities are involved. For example, the issuing activity may desire to wait
for the remote activity that finishes soonest - but which one is that? And
how are the remaining remote activities subsequently handled?

There are many engineering techniques for the obtainment of concurrency
control, but these are too numerous to mention here.

To tackle these issues, ANSA provides a Distributed Processing Language
(DPL) which makes a clear distinction between the concurrency expressed in

13

Advanced Networked Systems Architecture

the computation, and that which is realised by engineering mechanism. The
application writer is required to indicate declaratively where in a
computation parallelism is possible, or where synchronisation is required,
but without any preconceived ideas about their mechanisation, whether
through local or remote resources. The engineering domain is accordingly
given proper control over the choice of appropriate implementation strategy.
In particular, the decision on whether to take advantage of the parallel
options of a computation is controlled at the proper place.

DPL is supported by engineering tools that map abstract
specifications to appropriate engineering mechanisms.

computational

4.5 Approach to scaling

Systems will constantly change, grow, and merge. This introduces variations
in scale: small to large, slow to fast, specific to general.

In response to these needs, ANSA observes the following principles:

. Allow for scaling variability by building expansion capability into the
architecture

l Provide extensible naming and trading facilities

. Federate through negotiable, cooperating, remote services

. Do not assumeglobal mutable knowledge

The principles of separation, federation, and heterogeneity enforce the view
that it is not possible to assume the existence of a widely distributed global
resource pool which can be accessed directly from anywhere. It is simply not
realistic to encompass the entire universe of systems for all space and time.

The ANSA view is that scaling differences must be accommodated as needs
arise in much the same way as the federation principles described allow
naming and trading to expand in ever wider domains and contexts.

Scaling issues are also greatly eased if data is manipulated where it is held,
and all requests for its manipulation are permitted only via references to
instances of interfaces. Although this requires negotiation of service
agreements, it makes no assumptions of global mutable knowledge.

14

Advanced Networked Systems Architecture

5 Engineering structure of ANSA systems

The following presents a sketch of the way in which the principal components
ofANSA systems fit together.

Figure 1 shows two ANSA systems. Each system is running several
applications (comprising clients and servers), together with a node manager
(N) and a trader(T).

Each trader provides a trading space that can be searched by typename and
by optional property u&es. Any server can export instances of interface
types to the trader in order to make them accessible to clients. Any client can
use import operations on the trader to acquire access to required interface
instances.

The traders are connected (possibly federated) to permit the sharing of
services across the systems. This federal arrangement, together with the
distributed integrated platforms, gives the illusion to clients and servers in
both systems that they exist in a single homogeneous system.

Figure 1: ANSA systems

Connected Traders

Integrated Platforms
N and T are

built-in “applications”

Each node manager maintains a database of configuration details pertaining
to its node in the distributed system. A node is the engineering abstraction of
a host machine in the system.

As shown in Figure 2, a node supports one or more nucleus components (Ns),
each of which takes the basic resources of its local host’s infrastructure
(operating system and hardware) and builds upon it to provide a basic
distributed computing environment common to all hosts in the distributed
system. The nucleus components are then able to work together, along with
the traders and the node managers, to provide an integrated support
platform for distributed computing.

Node managers work in conjunction with a distributed factory service (not
shown) to instantiate application objects above the platforms. The factory
service creates capsules for the containment of instantiated application
objects.

Figure 3 reveals the structure of an ANSA capsule. Each capsule’s address
space will be logically partitioned to provide a private memory space for each

15

Advanced Networked Systems Architecture

Figure 2: Distributed nucleus components

i

Distributed ANSA
I

Platform
I I

\ I I
\ -I r ____-__-___-

I

:

Host
Systems

contained application object. The distributed system will comprise one or
many objects per capsule, one or many capsules per node, and many different
nodes.

Transparency services are the components that enable the various aspects of
distribution to be hidden from application clients and servers (see $6).

At a level below the nucleus are the components that provide executive (O/S)
and message passing protocols. (If interworking between heterogeneous
systems is not required, either or both of these can be replaced by local
equivalents.) The lowest level contains the physical host’s processor (PI,
communications (C), memory (Ml, and device (D) management functions.

The ANSA engineering model specifies the mechanisms needed to provide
the various kinds of transparency and the protocols for interaction between
nucleus components on different node/hosts. Application components are
structured according to the ANSA computational model, and the distributed
computing aspects of the application are compiled into calls on the interfaces
to the appropriate transparency and platform components.

The engineering model can also be taken as a template for the
implementation of the nucleus and the transparency components, although
this is not mandatory for either application portability across
implementations, or for interworking between them. The conformance
criteria for portability are the interfaces to the transparency and platform
components. Once conformance to the computational model has been
established, it is possible to conceive of multiple implementations of the
architecture which make different engineering trade-offs (see $7).

Many hosts will provide a range of functions and resources beyond those
needed by the platform and may wish to contribute them to the distributed
computing environment as potential application components. This can be
achieved by extending the nucleus with additional interfaces that map onto
the locally available functions. Thus the nucleus acts as an architectural

16

Advanced Networked Systems Architecture

Transparency
Services

Nucleus

Executive
Protocols

Message
Passing
Protocols

Local Host
Management

Figure 3: An ANSA capsule

ANSA interfaces
-------1

v
to local functions

I --_----_I

can be replaced with local
equivalents if remote
interworking is not required

switch, transparently linking application components to both local and
remote resources in a uniform way.

17

Advanced Networked Systems Architecture

6 Transparency services

The question of whether it is practicable to distribute a computation may
depend on many things. Where communication costs are high it may be
prudent to minimise the distribution of those parts that are expected to
interact heavily. Where parts of a computation are processor intensive, the
extra concurrency introduced by distribution may lead to improved
performance. Where replication is used to increase reliability and
availability, it is essential that software replicas are located on distinct
hardware replicas.

The extent to which an application writer needs to be concerned with the
integration of distributed system components can be controlled by the
selective application of transparency services.

In an application with complete distribution transparency, the application
writer has delegated all responsibility for distribution to the underlying
support environment. Without such support, the writer must assume full
responsibility for all aspects of distribution.

In practice, the application writer may require control over selected aspects of
distribution. For example, a configuration management application would
obviously require control over the location of system components. By
allowing the selection of transparency services, each application need only
deal with those distributions aspects that are pertinent to the application.

ANSA supports the following transparency services:

b Access transparency hides the difference between local and remote
provision of services. The overriding criterion is to remove the
concept of co-located clients and servers. (Local optimisations can be
effected by engineering decisions where appropriate.) With this
transparency service in place, all invocations are considered to be
remote.

) Location transparency hides the location of servers from the clients
that interact with them, and vice versa; thus enabling interacting
parties to be located anywhere in the distributed system.

) Migration transparency hides the effect of servers moving from one
location to another while clients are interacting with them.

) Concurrency transparency hides the existence of concurrent users of
servers. If a server is supported by concurrency transparency, then
each of its clients is unable to observe any effects due to other clients
that make simultaneous use of that service

) Failure transparency hides the effects of partially completed
interactions that fail for what ever reason. This transparency service
is built upon mechanisms which

(a) make interactions atomic so that they either complete entirely,
or fail with complete removal of partial effect;

19

Advanced Networked Systems Architecture

(b) make interactions completely impervious to single point
failures in client and server configurations comprising replicas

difference between replicated and) Replication transparency hides the
non-replicated clients and servers

The technique for providing any transparency service is based on the single
principle of replacing an original service by a new service which combines
the original service with the transparency service, and which permits clients
to interact with it as if it were the original service. The clients need not be
aware of how these combined services are achieved.

Advanced Networked Systems Architecture

7 Conformance

A conformance point is a place where a test can be made of a system
component (a platform component or an application object) to see if it meets a
set of conformance criteria. A conformance statement for a component must
identify where the conformance point is, and what criteria are satisfied at
that point.

In ANSA, all architectural conformance points are described abstractly
rather than by reference to concrete data formats and protocols. Thus
architectural conformance does not automatically guarantee interworking or
portability. Practical interworking and portability guarantees require
systematic choice of actual formats and protocols, or the use of translators
between alternative formats. These are system conformance choices and fall
outside of the architecture’s rules and recipes.

Note however that conformance to the architecture does not always
guarantee compatibility of interworking, as the following example makes
clear.

Imagine two airline reservation systems built using the same hardware,
protocols and programming languages, conforming to ANSA throughout.
The information structures for flight reservations and cancellations are the
same. Since both systems serve the same purpose it might be hoped that they
will work together. Suppose however they have different ways of treating
cancellations. One may have an exchange policy: “make the customer a
booking on another airline”; the other a refund policy: “give the customer’s
money back”. When both systems are interconnected, the clash of policies
could cause problems to reservation staff as well as to passengers, since the
composite system will not exhibit a consistent cancellation policy.

To overcome this class of problem, service specifications must be
cross-checked for compatibility on all points of policy between the application
components, and between all supporting ANSA components.

The following provides some guidelines on system conformance in the context
of the ANSA computational model and the ANSA engineering model.

7.1 Conformance in the ANSA computational model

The ANSA computational model is in two parts:

b the interaction model defines permitted forms of interaction and a
type scheme within which potential interactions are to be classified.

) the construction model defines
objects may be constructed.

elements from which the interacting

The structure of the model and the organisation of the description of the
model are derived from the relationships that exist between computational
objects and the relationship between a computational object and its

21

Advanced Networked Systems Architecture

supporting environment. The model establishes conformance requirements
that must be satisfied if the pieces of a distributed system are to fit together.

There are two computational conformance points; the interworking
conformancepoint and the portability conformance point. Figure 4 shows two
objects and the positions of the conformance points with respect to the objects
and the environment that animates them.

Figure 4: Computational conformance points

Interaction
(potential)

Interworking
conformance

point

It is possible to conform to the interaction model without conforming to the
construction model. Conforming to the construction model guarantees
conformance to the interaction model since there are no interaction facilities
other than those corresponding to the interaction model.

7.1.1 Computational interworking conformance

At the inter-working conformance point there are two kinds of conformance.
The first is conformance to the interaction model. The second is interface
type conformance for potential interactions.

An interaction conformance statement for an object asserts that all
interactions at the conformance point follow the rules of the interaction part
of the ANSA computational model.

Znterface type conformance applies to the potential interactions between
objects rather to the objects themselves. An interface type conformance
statement can be made only about a potential interaction in which the
participant objects are interaction conformant. An interface type
conformance statement for a potential interaction asserts that neither party
to the interaction will attempt to interact in a way that the other does not
expect.

Objects cannot interact if their models of interaction are different.
Interaction conformance is mandatory for an object that is to participate in
an ANSA system.

22

Advanced Networked Systems Architecture

7.1.2 Computationalportability conformance

The portability conformance point is between an object and the abstract
machine which animates it.

A portability conformance statement for an object asserts that the object is
defined in terms of the elements of the ANSA construction model.

A statement ofportability conformance for an abstract machine asserts that
it can animate objects that conform to the ANSA construction model.

Each object must match the animation environment that supports it. The
animation environments in a system need not conform to the ANSA
construction model. If a system has animation environments based upon
more than one model then there will be restrictions upon where each object
may be placed which will limit the way in which the system resources can be
exploited.

The ANSA construction model has been designed to be well matched to the
interaction model and also to permit the development of mechanisms and
techniques that allow the resources of a distributed system to be exploited
effectively.

1.2 Conformance in the ANSA engineering model

Figure 5 shows an engineering structure of an ANSA system that illustrates
application objects, transparency services, nucleus components, operating
systems, and the underlying communication networks.

7.2.1 Engineering interworking conformance

In the engineering viewpoint there is an interworking conformance point
between interacting engineering objects. Two kinds of conformance
statement can be made at this point.

A statement of interoperability conformance for an object asserts that a stated
layering of transparency protocols will be applied above the
nucleus-to-nucleus protocol to all interactions through the conformance
points. Interoperability conformance guarantees that the required
transparency can be maintained with other nodes asserting the same
interoperability conformance. System interoperability conformance can be
tested relative to a specified test service, test interface, and stack of
interconnection protocols.

A statement of interconnection conformance for a node asserts that identified
nucleus-to-nucleus communications services will be used to exchange data
and synchronisation messages. Interconnection conformance guarantees
remote interaction between nodes. System interconnection conformance can
be tested relative to a specified test service, test interface, interconnection
protocols and data formats.

23

Advanced Networked Systems Architecture

Figure 5: Engineering conformance points

Engineering
Portability

Nuclei_________

Operating
Systems -------

Network _______________

7.2.2 Engineeringportability conformance

In the engineering viewpoint there is an engineering portability conformance
point between an engineering object, and the transparency services and
nucleus upon which it depends.

A statement of engineering portability conformance for an object asserts that
the procedures and data structures comprising the object conform to the
definition of a given engineering object specification, and that the object
depends upon a specified selection of particular transparency service
interface types.

A statement of engineering portability conformance for a node asserts that it
provides a nucleus and a given set of transparency services for the execution
of engineering objects.

Engineering portability guarantees the ability to exchange engineering
objects, including transparency services, with other conforming nodes.
Systems conformance at this point asserts that the node will accept one or
more concrete representations of objects conforming to the nucleus and the
interface types of the transparency services.

Engineering portability conformance can be omitted when exchange of
engineering objects between nodes is not a requirement.

24

Advanced Networked Systems Architecture

8 Summary

This paper has presented a a brief picture of the technical design philosophy
of the ANSA architecture from the perspectives of the ANSA computational
model and the ANSA engineering model. These two different but
complementary viewpoint models do not, however, tell the whole story.
ANSA also defines other models with specific focus on enterprise,
information, and technology viewpoints. Moreover, many technical issues
and/or details have not been discussed, e.g. security, atomic transactions,
interface groups, fault management and recovery, concurrency control
methods and event ordering techniques, distributed programming language
facilities and interface type systems, and system installation management.
The architecture covers these aspects, and much more, but the interested
reader will need to consult specific ANSA technical reports and manuals.
This technical literature is available through Architecture Projects
Management Ltd, Cambridge, England.

25

Advanced Networked Systems Architecture

9 Acknowledgements

The editor would like to take this opportunity of expressing gratitude for all
written and verbal contributions to this paper given by technical members of
the ISA project core team: John Bull (APM), Jane Dunlop (APM), Andrew
Herbert (Chief Architect, APM), Yigal Hoffner (APM), Nicola Howarth
(APM), David Iggulden (APM), Rob van der Linden (Research Manager,
APM), Erling Lindholm (Ellemtel), Cosmos Nicolaou (APM), Dennis Nyong
(CASE), Michael Olsen (HP), Ed Oskiewicz (BT), Dave Otway (GEC
Marconi), Owen Rees (APM), Alastair Tocher (STL), John Warne (STL), and
Andrew Watson (APM).

Additional thanks are due to John Dobson (Newcastle University) for
contributing points of clarification to parts of the text.

Appreciation is also extended to all management, business, sales and
secretarial staff of APM for their dedicated support of the ISA/ANSA pursuit,
its ideas, and its promotion: Janice Crofton, Mike Eyre (Managing Director),
Andrew Herbert (Technical Director), Chris Jones, David Lear-month (STL
seconded to APM), Elaine Mills, Garth Shephard (Director), Bill Talbot
(Company Chairman), Judy Tillotson (Company Secretary), and Hugh Tonks
(Business Manager).

Finally, special thanks must be given to all collaborators and associates of
the Esprit ISA project, without whom this opportunity would not have arisen.

27

Advanced Networked Systems Architecture

10 Background

The Advanced Networked Systems Architecture (ANSA) originated in a
project undertaken by BT, DEC, GECYMarconi, GPT, HP, ICL, ITL, Olivetti,
Plessey, Racal and STC within the UK Alvey Information Technology
Programme. As the results of the project became more well known it became
apparent that a more formal structure was needed to manage the
development and exploitation of the architecture. To this end Architecture
Projects Management Ltd (APM) was set up as a company in 1989. APM
undertakes work on ANSA on behalf of the sponsors at a central laboratory
in Cambridge, England. Much of the work is currently funded via the
Commission of the European Communities (CEC) ESPRIT II Programme
within a project called ISA - Integrated Systems Architecture - in which
many of the sponsors of APM are joined by AEG, CASE, CTI-Patras, Ericsson
Telecom, Televerket, Philips, France Telecom (SEPT), and Siemens. The
architecture continues to be known as ANSA, and APM also trades under the
name ANSA.

29

Advanced Networked Systems Architecture

11 Standards

Standards are an essential part of the development of distributed processing
systems. This was recognised early in the ANSA phase of the project, and
strong efforts have been made to introduce the architecture into standards
work. The main activity has centred on the ISCYIEC JTCl WG7 Open
Distributed Processing project where project members are active at the
national and international level. In this particular forum the ideas of the
ANSA Architecture have been accepted and incorporated into the working
draft of a prescriptive model of Open Distributed Processing.

There are two other standards activities where the project is active through
the participation its members. The first is ECMA whose technical reports
are directed to the IS0 ODP work and the second is CCITl’ whose work on a
Distributed Applications Framework has a technical orientation based more
on telecommunications but which nevertheless has a strong overlap with the
IS0 work. This overlap shows itself in a number of project members who
contribute to both activities. An agreement has recently been made between
IS0 and CCI’R’ for joint working which is expected to lead to joint text. Work
has also started on specific standards related to the GDP framework, notably
Remote Procedure Call, and on plans to generate new work items, for
example, on trading, are emerging as the framework activity matures.

Other relevant standards activities, reflecting on the large scope of the topic,
such as document architecture, dictionaries, application programming
interfaces, user architectures, database reference models, upper layer
architecture, etc are kept under review by the team. Contributions to the
ECMA work on Support Environments for ODP, Remote Procedure Call, and
Open Systems Architectural Framework are made either directly or by
review.

31

A&awed Networked Systems Architecture

12

(4

(b)

(cl

(d)

(e)

(f)

k)

(h)

(8

ti)

Related documents

The ANSA Reference Manual, Vol. A, B and C, Architecture
Projects Management Ltd., Cambridge, 1989.

ANSA: An Engineer’s Introduction to the Architecture,
Architecture Projects Management Ltd., Cambridge, 1989

ISO/IEC JTCl/SC2l/WG7: Topic 4, Dot. N309, ODP, October
1990.

JTClISCBlTWG7 & CCIT’IYSG VII, Dot. N314, ODP, December
1990.

JTClISCPUWG7 & CCITI’/SG VII, Dot. N314, ODP, December
1990.

ISO/IEC JTClISCPlIWG7, Dot. N315, ODP, December 1990.

Bull, J. A., Object Management Group, Object Request Broker,
CO.059, Architecture Projects Management Ltd., Cambridge,
1991.

The ANSA Computational Model, AR.OO1.OO, Architecture
Projects Management Ltd., Cambridge, 1991.

Linden, R.v.d., Trading in the Five Projections, RC.lO1,
Architecture Projects Management Ltd., Cambridge, 1990.

The ANSA Naming Model, AR.003.00, Architecture Projects
Management Ltd., Cambridge, 1991.

33

