

ESPRIT Project No. 25 338

Work package H

User Access

Software Report
DH6.3

(Requirements, Design, and Implementation)

ID: DH6.3 Date: 23.2.98

Author(s): Elcha Triep, Michael Breu, Philip
Scheideler (Fast e. V.)

Status: Version 1.3

Reviewer(s): H.-G. Stein, M. le Nouy Distribution: Project & Reviewers

Change History

Document Code Change Description Author Date

DH5.2 & DH5.2 First version of document. Based on DH3 for
UA V1.1

MBR & ETR 7.8.98

DH6.3 Update to UA V1.2 MBR & PSC 14.10.98

inclusion of pattern stuff, inclusion of new
gateways

MBR 31.1.99

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99

1 INTRODUCTION... 1

1.1 Purpose of this Document...1

1.2 Overview...1

2 REQUIREMENTS TO THE USER ACCESS COMPONENT ... 3

2.1 Communication Requirements...3

2.2 Layout Rendering Requirements...4

2.3 Typical Usage Scenarios ..5
2.3.1 The Agent Wants To Deliver to Information to an Off-Line User ..5
2.3.2 The User Contacts his Personal Assistant through an Entry Point ...5

3 DESIGN OF THE USER ACCESS .. 7

3.1 Architecture of User Access...7
3.1.1 Overview ..7
3.1.2 Document Model ..8
3.1.3 Interaction between Connection and Agent ...10
3.1.4 Generic Mark Up Language XML/XSL ..12
3.1.5 New supported devices and their integration to FollowMe...13

3.2 Design Patterns ..13
3.2.1 Document Delivery ...13

The Components ..13
3.2.1.1 Variations: ...14

3.2.2 XML-based Document Delivery ..14
The Components ..14

3.3 Overview to Classes and Interfaces of the User Access Component...14
3.3.1 Interface UserAccess...14
3.3.2 Class ConnectivityDescription ..15
3.3.3 Interface DeviceGateway...15
3.3.4 Interface Connection ...15
3.3.5 Interface Document...16
3.3.6 Interface ExternalRepresentation ..16
3.3.7 Interface SimpleConverter ..16
3.3.8 Interface DeviceGateway... Error! Bookmark not defined.
3.3.9 Interface QualityOfService ..17
3.3.10 EntryPoint .. Error! Bookmark not defined.

4 DEVICE GATEWAYS.. 18

4.1 Http-Entry Point ..18

4.2 Fax Device Gateway...19

4.3 Email Device Gateway ...20

4.4 SMS Device Gateway ...20

4.5 Swing Device Gateway ...21

4.6 Offline HTML Device Gateway...21

5 EXAMPLES... 23

5.1 Example Use of the User Access by an Agent..23

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99

5.2 How to use XML and XSL...25
5.2.1 XML Example ..25
5.2.2 XSL example ..26

6 REFERENCES.. 28

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 1

1 Introduction

1.1 Purpose of this Document

A key objective of the FollowMe project is to free the user from a fixed desk-top. A user can deploy a software personal assis-
tant (PA) [2] on the network which co-ordinates a set of task agents to accomplish missions. Both the agents and the users are
mobile, i.e. the personal assistant can roam through the network while carrying out its mission, and the user can change his
geographical location, and also the type of media, through which he interacts with its PA. The goal of the user access is to
enable the information exchange between users and their personal assistant through a variety of different media without loos-
ing quality of interaction. The user must be able to find his personal assistant and to communicate with it interactively. Vice-
versa the personal assistant must have facilities to send the user information about his missions, although he is not on-line. To
this end, each user’s personal assistant maintains a diary that contains connectivity information.

This document describes the requirements, the design and the implementation of the User Access module and the
device gateways. It is intended to convey the design rationale behind the User Access and the detailed architecture.

This document should enable to write FollowMe applications that use services of the user access.

1.2 Overview

The User Access provides facilities for mobile applications to exchange information with their mobile users and vice
versa. The User Access consists of a main component that provides standard interfaces for FollowMe applications to
interact with users, and a set of device gateways that provide an adequate layout rendering of this information.

Main requirements are

• the support of interactive (i.e. input/output) and passive (output only) devices via common interfaces,

• the provision of a generic mark-up language to describe the contents and the layout of the rendered documents, and

• mechanisms to adapt the transmitted information and layout (i.e. the quality of service) to the performance of the
system and the selected end-user device.

 The design is driven by a Document Delivery Pattern. I.e. an application hands over a document to the user access for delivery.
The document itself encapsulates the information, but also a description how this information is rendered to a layout suitable
for a certain device.

 The device gateway negotiates with the document for an appropriate layout rendering. A document provides a set of external
representations of its information. If these representations are not suitable for the given device, the device gateway requests a
standard representation of the information in XML ([10]) together with an accompanying style sheet in XSL ([8]), and renders
both to an adequate layout.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 2

 Currently device gateways for WWW-browsers, Fax, SMS, email and java-enabled devices (based on swing) are imple-
mented.

 The following chapter describe briefly the requirements that have been addressed by the user access component. It is followed
by an overview to the design patterns and the software components. Additionally an overview to the API is given. The docu-
ment concludes with an example of how this API can be used by a FollowMe mobile object.

The details of the user access code are documented with JavaDoc and are available from http://hyperwave.fast.de
/FollowMe/.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 3

2 Requirements to the User Access Component

The User Access component has to provide facilities for interaction between the agent and the user (see Fig. 1). There
are two main classes of requirements that are addressed by the user access component:

• Communication requirements: i.e. what devices have to be supported, what are the facilities to exchange information
between the user and the agent1?

• Layout rendering requirements: i.e. what facilities are needed to present the information on the selected device

User Access

Communication
 (output only)

User's Phone / SMS

Fax 089/123456

User's Desktop

Communication
 & Interaction

Place
Agent

Diary

Communication
 (output only)

Fig. 1 The User Access Component as a mediator between agents and devices

2.1 Communication Requirements

Users interact with their agents through a variety of different media. A set of devices servicing these media types is
supported. In the following we distinguish between passive (i.e. output only) and interactive (i.e. input/output devices).
The following devices should be supported

1 Please note that in the following the concepts of agent, personal assistant, and application could be used synonymously. We will

mainly use the term agent, in some cases personal assistant if we want to emphasise the personalised nature of the agent. There
is no difference from the usage point of view whether the user access service is used by a (mobile) agent, or any other flexinet-
based application.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 4

• Interactive Devices

• web-browsers

• Java enabled devices that support graphical output

• Passive Devices

• fax-machines

• audio output via phone

• SMS (short message systems)

• email

Additional device (types) should be pluggable into the system without the need to modify the existing agent’s capa-
bilities.

Initiation of a communication can either be triggered by an agent in order to contact its user, or vice versa.

When the user wants to contact its agent, he accesses it through an entry point provided by the user access component.
The contact can e.g. be established from the user’s browser. The browser contacts a server that acts as an entry point.
An entry point provides two functionalities: It contacts an agent factory to create a new agent that gets in touch with
its user, or it can lookup through a predefined agent directory an existing agent. In the latter case the entry point in-
forms the agent to get in touch with its user.

The agent maintains connectivity information in the user’s profile. When the agents wants to deliver information to its
user, it has to lookup current connectivity information in the user’s profile. This can be the user’s business fax, or
home fax, or the user’s SMS gateway. The agent requests from the user access component to open a connection to this
device. With this connection opened it can send to (and potentially interact with) the user.

2.2 Layout Rendering Requirements

The agent may wish to send the same information to the user through different devices and media types. Thus infor-
mation can have different external representations, depending on the type of device. For example if an agent wants to
deliver the information that a share’s stock value has exceeded some set limit, this can be rendered in various ways to
the user:

• On a web browser as a web-page with sophistical graphical layout elements

• As an email that containing a text note

• As a voice message via phone: “Some shares in your portfolio have exceed a limit, please contact your agent”.

The knowledge of the agent about the specific characteristics of a device should be as small as possible. Thus the User
Access has to provide a unique interface for different device/media types, and to bundle devices with similar layout
capabilities into a device type.

To achieve this, information and layout must be separated: The information transferred is the same for all devices. The
layout maps this information to an appropriate output format (see Fig. 2).

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 5

Place Agent

Infor-
mation

Layout1

Layout2

Layout3

+

+

+

User's Phone / SMS

Fax 089/123456

User's Desktop
Layout Description

Fig. 2 Separation of information and layout description

The rendering into an appropriate external representation and the transmission is handled by a device gateway. A
device gateway provides connections to a set of similar devices (e.g. a SMS device gateway, a fax device gateway, or
an http device gateway). Each of these device gateways provides a certain set of capabilities.

The user access must provide mechanisms to adapt the layout description to different constraints as e.g. size of an
output screen or black & white vs. colour output. The rendering of a layout can be quite resource consuming. Thus the
transmission process must be separated into its two basic functionalities (see Fig. 3):

• rendering a layout by converting it into an appropriate representation suitable for that device, and

• transmitting the external representation to the end-user device.

TransmissionConversion

Infor-
mation

Layout1
Agent

End-user
device

External
Repre-

sentation

Fig. 3 Conversion and transmission of information

2.3 Typical Usage Scenarios

The following sections give typical usage scenarios of the user access components.

2.3.1 The Agent Wants To Deliver Information to an Off-Line
User

The agent wants to send information to the user that is currently off-line. It looks up the diary in the personal profile to
discover through which (potentially passive) device (fax, phone, SMS, etc.) the user can currently be contacted. The
agent prepares a document (or a set of documents).

Then, it contacts an available UA component to open a connection to the end user’s device and asks it to send the
documents. The agent may receive an error message, alerting of some errors in the transmission or a transmission
close message, which indicates a successful transmission of data.

2.3.2 The User Contacts his Personal Assistant through an
Entry Point

The user contacts his personal assistant through an entry point to a FollowMe-based system. The entry point can e.g.
be an URL of a http-server that provides an entry point service. The entry point is attached to an input/output device

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 6

gateway. An entry point typically offers the user two options: to search for his personal assistant or to ask an agent
factory for the creation of a new personal assistant.

If the user chooses the option ”search for the personal assistant”, the UA looks up the agent via its name in an agent
directory2. The agent gets informed that his user is on-line and gets the connection details (device type, format to be
used, etc.). The agent reacts by sending the relevant information that will be processed via the connection and finally
send it to the user. The UA captures the responses from the end-user’s device and delivers it to the agent component to
handle it.

If the User chooses the option ”create a new personal assistant”, the UA contacts the personal assistant factory and
asks it for the creation of a new personal assistant for an on-line user. The factory creates a personal assistant and can
advise it to move to the place associated with the entry point. The personal assistant gets an ”user is on-line”-event.
The rest is as in the previous case.

For each on-line user, the capabilities of the end user device will be captured by the user access and transmitted to the
agent. Thus, the agent may build appropriate deliverables for his on-line user.

2 How this directory is managed, is in the responsibility of the application. E.g. for Bavaria-Online users there will be a Bavaria-Online-Agent-

Directory that holds information about all Bavaria-Online Personal Assistants. The Entry Point may have to be tailored to look up personal
assistants in this directory. How Personal Assistants are named is also in the responsibility of the application.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 7

3 Design of the User Access

In the following, we describe the overall design patterns of the user access, its principles and the objects that define the
service’s architecture and its functionality. The interaction between User Access service and other FollowMe objects is
explained in interaction diagrams.

3.1 Architecture of User Access

3.1.1 Overview
A host, participating in a FollowMe application, can offer a set of local devices that support communication with the
end user. Examples of such devices are fax cards, voice modems, a web-server capable to display HTML on web
browsers, or an applet that acts as an (sophisticated) input/output device. These devices typically establish a connec-
tion to the user’s end device. The characteristics of these connections will vary depending of the device type and the
specification of the agent.

Place

Agent

Connection

end user
device

User Access service

Device Gateway

manages

local device

1: OpenConnection
1: OpenConnection

Document

Navigation

2: Send(Document)

External
Representation

Fig. 4 Basic communication schema between agent and end user

Regarding this model, the main task of the UA component is to manage connections between agents and end-user
devices. This includes the opening of a suitable connection, the transfer of documents, the support of navigation inside
documents and the closing down of a connection. Both agents and users are able to close the connection and interrupt
the communication between them at any point in time.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 8

User Access

Device
GatewayEntryPoint

manages

Is_a

Connection

opens

Device-
Capabilities

captures

Simple-
Converter

uses

1

1
1

n

1

n

Fig. 5 Class Diagram of the main User Access objects

The User Access is a service that manages the local devices (fax card, modem, email-service, etc,) available at a host.
Each device has a Device gateway3 associated. The user access service can also relay to device gateways maintained
by other user access services.

Device Gateways provide facilities to open connections between the local device and the end-user devices. They hold a de-
scription of the capabilities of the device, and provide a converter from the XML format to the external representation required
by the device. An Entry Point is a special device gateway installed at known locations that allow the user to request a connec-
tion to an agent.

A connection is a (temporary) channel to transport a set of (potentially complex) documents to the end-user’s device. The
transport can include conversion into appropriate external representations and transmission of referred documents (e.g. im-
ages). Also connections handle navigation through references to other documents and user responses (see 3.1.2).

There are two ways for an agent to obtain a connection. Either the agent contacts a UA service and asks it for a connection
(e.g. via a fax device) to use. Or it gets a contactUser message from an entry point that contains the connection as an argu-
ment.

 The connection properties, i.e. capabilities of the device, or the number of a telephone, are specified by the connectivity de-
scription that is found in the personal profile or constructed by the agent. The user access service looks for a device gateway
that can support the requirements given in the connectivity description. This can be either a local device gateway or also a
remote device gateway which is completely transparent for the Agent. The agent can then send documents through the con-
nection object.

The information is encapsulated in documents. Information can have different external representations. A standard
external representation supported by all device gateways is XML (see 3.1.2). Together with an associated layout descrip-
tion in XSL these representations can be translated into appropriate external representations supported by that device, as e.g.
HTML, plain text.

A hook to support the Quality of Service (QoS) is provided in order to adapt the use of resources and network traffic to the
performance of the system, the network, and the capabilities of the device. Via the QoS the layout of the rendered documents
can be influenced. Thus the user may e.g. receive black and white data instead of coloured images depending on the
agent/applications preferences, i.e. the agent can decide if it is preferable that the user receives a coloured image at a very low
speed or if it is better to send the user just black and white pictures.

3.1.2 Document Model
Documents have to support three types of functionalities:

• Documents represent information sent from an agent to the end-user: The information can have quite a complex
structure due to its multi-medial nature. It can contain text, pictures, audio, etc. Thus documents may refer to other

3 Device gateways can be compared to device drivers in standard operating systems

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 9

documents, containing individual pieces of the information. Each document can be rendered in different external rep-
resentations which are described as MIME-types (see Fig. 6).

Document External
Representation

provides MIME-typeIs_of

references

Fig. 6 Class Diagram for Documents

• Documents give access to layout descriptions. Documents provide e.g. XSL documents describing the layout of the
information. The user access uses this description to render the information into the appropriate layout.

• Documents handle user feed-back, i.e. they manage the reaction of a user on this document. A user can trigger feed-
back by two types of actions: Following links to referenced documents, and by returning a set of input parameters re-
quested (e.g. in an HTML-form).

A document gives access to different external representations (see Fig. 7). These representations can be already pre-
compiled, or constructed on the fly. Device Gateways provide converters4 that convert from an external representations
to another external representation, suitable for this device gateway. If a document is not able to provide the appropriate
external representation for a device, the XML representation is used to derive the appropriate external representation.
These external representations are described by mime types (e.g. text/xml, text/html, image/gif). The relevant method
is

public ExternalRepresentation getExternalRepresentation(MimeType mimetype)

A document can refer to other documents by an (internal) name. I.e. a document can be queried to give access to an-
other document via the method

public Document getReferredDocument(String name, Properties params)

The name can refer to the result of the filling of a form by the user. In this case params is a list of extra parameters
values given by the user. Thus a document can provide its own handling facilities for user feedback.

D o c u m ent

E x t.
Rep r1

E x t.
Rep r2

E x t.
Rep r3

Fig. 7 Structure of Documents

Document is an interface, the implementation behind this interface is application depend. Thus documents can build
quite a complex structure, e.g. contain subdocuments, refer to other documents.

4 Converters implement the interface SimpleConverter. In future releases more complex converters may be defined.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 10

Fig. 8 depicts the example of an issue of a newpaper. This issue is described as a document, which has two external
representations in XML and HTML. These representations refer to articles as subdocuments5 which in turn refer to
documents that contain photos. These photos are represented in GIF-format.

NewsPaper
Main Page

Article 2

Article 1

HTML repr.

XML repr.

Photo

GIF repr.

Article 1

Artic
le 1

Article 2Article 2

House

Document

Document

Document

Document

Fig. 8 Example of a network of documents

3.1.3 Interaction between Connection and Agent
The interaction between agents and connections falls into three phases:

• Obtaining a connection through an open request to the user access or a device gateway , or through the “contac-
tUser”-message emitted by an entry point.

• Sending of documents, navigation through documents

• Closing a connection

There are two ways to obtain a connection:

• The agent actively requests from a user access service the opening of a connection with the
openConnection(ConnectivityDescription ConDes) method. Argument to this method is the Connec-
tivityDescription which describes how the user can be reached, i.e. the device type to be used, and the number. (Fig.
9)

5 Whether these documents are subdocuments or separated documents is just a conceptual view. From the user access point of view

they can be independent documents.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 11

• The user contacts an EntryPoint. The entry points are located at well known hosts for each device type through which
the user can contact FollowMe, e.g. an http-address if the contact is through a browser. This EntryPoint interface is in
charge of opening a Connection and it calls the method public contactUser(Connection C) in the inter-
face of the agent. contactUser carries as a parameter the connection via which the user is online. The agent can then
use this connection to interact with the user. (Fig. 10)

The agent uses the send method of the connection to ask for the transmission of a document. The transmission can
involve the access to referenced documents. However the agent is not directly involved in the transmission of these
documents, because the documents themselves handle the access. The effect of multiple sends is device dependent. On
screen oriented devices (e.g. http-devices, awt-devices) it will in open another window for each document. On text
oriented devices (e.g. mail, fax) it will result in a concatenation of the documents.

The sending involves both the transformation into the correct layout and the physical transmission to the user’s end-
device. These two steps can be taken appart by using a SimpleConverter to render the external representation and
using the method public abstract void sendraw(ExternalRepresentation er) to physically transmit the
external representation.

A connection can be closed by the agent with the close-method. Whether this immediately closes the connection or
whether the physical transmission of documents is still ongoing, is device dependent.

In order to intercept the closing of a connection by the user, or by enforcement of the user access, an agent can install
a ConnectionListener. This listener can receive two types of events: Failure of transmission and closing of the
connection.

Closing

Navigation

Opening

Agent User Access
Device

Gateway
Document d1

Document d2
openConnection

openConnection
create

c.send(d1)

d1.getExternalRepresentation()
d1.getReferredDocument()

d2.getExternalRepresentation()

c

d2

closed(c)

Connection c

Fig. 9 Interaction diagram: agent actively opens a connection

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 12

Navigation

Opening

Agent a
User’s

 Browser
EntryPointDocument d1

Document d2

contactUser(c)

SearchAgent(“a”)

create

c.send(d1)

Connection c

...

document
document

Fig. 10 Interaction diagram: A user requests an Entry Point to search and to contact agent “a”

3.1.4 Generic Mark Up Language XML/XSL
The main motivation to use a mark up language to represent data and layout was born from the requirement to have a general,
common way to represent data and layout that has to be delivered to different users and devices with different capabilities like
audio, html/text, etc.

Why a mark up language to solve this problem?

Some uniform way to represent structured data was needed, some way to write documents in a form that allows to describe
their own grammar, i.e. describe elements and the structural relationships that those elements represent. We need extensibility,
allowing agents to create their own elements representing data, managing of structured data with a high level of nested com-
plexity, some common way to describe different views of the same data. XML emerged as a standard which provides such
features. In parallel, XSL (“extended style language”) emerged as the complement of XML to be used to describe in a so-
called style sheet the layout of the XML data.

Both XML and XSL are W3C recommendations or W3C working draft. The language definition is not reproduced here,
but can be found at [8], [9] and [10].

Use of XML/XSL by agents/applications

The document model described in 3.1.2. is capable to transmit any type of information to the end user device, provided the
device gateway supports this type of information (i.e. the respective Mime-type).

The XML document can hold arbitrarily structured (textual) information (see [10] or e.g. the example in section 5.2).

The layout of the information is defined in an XSL style sheet (see [8] or [11]). XSL supports different modes. These modes
are basically used to discriminate between different layout descriptions:

“ ”(default): for devices which can understand full HTML, e.g. Browsers

“text”: for devices which can understand only text, e.g. some fax devices, e-mail

“staticHtml” for devices that support rendering of HTML-structured text and graphics like a fax

“shortText” : for SMS and similar devices with limited text capabilities

“audio” : for devices which can only work with sound, like a standard phone

Via the mode-method of the QualityOfService-Interface the agent can provide an alternative mode in which the layout should
be rendered. This could e.g. allow for the replacement of coloured images by textual descriptions, if the network bandwidth is
low.

The connection transparently applies converters that combine the XML document and the XSL description and produces a
format suitable for the end device (e.g. HTML, RTF, plain text, etc.).

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 13

If the device type is already known, the XSL style sheet can already be tailor-made for this device type. Otherwise the XSL
style sheet defines a set of different layouts for all devices to which a certain piece of data may be transmitted. The different
layouts are defined in different modes of the XSL layout rules.

The corresponding XSL-file is referenced in the XML-file by the <?xml-stylesheet href="..."?> tag. If no tag is given, the name
“index.xsl” is assumed. After parsing the XML-file the XSL-file is requested from the document (via the referredDocument-
method), and both applied to convert to the appropriate layout.

3.1.5 Integration of new supported devices types
The long term strategy to allow the dynamic incorporation of new gateways and capabilities include that agents do not need to
be reprogrammed to take advantages of them, i.e. they send a delivery (data, layout) and UA will adapt them, as best as possi-
ble, to be delivered to the end device. This approach has a lot of technical difficulties, due to the wide range of possible devices
to be incorporated, different platform, not enough Java techniques available in the market etc.

New device gateways that can be assigned one of the layout descriptions above (3.1.4) , can be integrated into a FollowMe
application without any reprogramming of the agents. If however devices with new descriptions are added, then layout files
have to be extended in order to take advantage of these new device types.

3.2 Design Patterns

The design pattern of Document Delivery governs the architecture of the user access. A specialisation is the XML
document delivery. These patterns are described in this chapter following the structure proposed by Gamma et al. [13].

3.2.1 Document Delivery
Pattern Name: Document Delivery

Context: Multi-medial presentation of complex information

Problem: Information needs to be delivered to users making use of a variety of devices. The details of which kind of
devices are available to a user change with the time and the user’s location, and indeed the user’s preferences for how
information is delivered may change for arbitrary reasons. The information must be rendered on these devices in an
adequate quality.

Solution: A uniform model is adopted in which information can be encapsulated in an inter-linked set of documents.
Each document represents a certain piece of the information. A document supports methods to render this piece of
information in several external representations (graphic, text, audio, ...), depending on the capabilities of the device.

The external representation may refer to other documents that maintain other linked pieces of information.

Devices are encapsulated by device gateways. Device Gateways encapsulate the knowledge of the capabilities of the
devices and provide connections to the devices through which documents are rendered to the users. According to the
available capabilities the most appropriate external representation of a document is selected. Interlinked information
are rendered by querying the referred documents.

This model allows for an information centred design. The representation of this information can be provided either at
compile time, or at delivery time. The encapsulation of a variety of device types into device gateways allow a uniform
interface for rendering of data.

Cross reference: Document Delivery is an instance of the pattern Self Interpreting Data in [14]. A document is an
object that understands how to render itself in different contexts. Particular instances of the pattern are XML based
Document Delivery.

The Components

The component architecture assumes that a client object wishes to deliver something to a user. The client contacts the
User Access component for the user’s end device and requests a connection satisfying some criteria (e.g. suitable for

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 14

delivering at a particular time of day and a particular volume of information) (see Fig. 4). The User Access creates a
Connection to be used by the client to communicate with the user and returns a reference to the Connection together
with a description of the Connection which may impose limitations on messages (e.g. message size). The client con-
structs a set of documents suitable for the Connection (it is assumed that it is the client that knows how best to con-
struct, edit, précis etc. the information to be delivered). The Connection is an abstraction which hides the details of the
use of real devices including any possible multiplexing, queuing etc.

3.2.1.1 Variations:

• Documents may be stubs. By asking them to provide the appropriate external representation the virtual device
causes the deliverable to collect the actual data from a remote file store.

• Documents may be created dynamically, depending on the feedback from the user. When this method is called by a
virtual device the deliverable may act as an applet and an interactive session is started with the user using the local
device for computation.

3.2.2 XML-based Document Delivery
Pattern Name: XML-Based Document Delivery

Context: Multi-medial presentation of structured information

Problem: Different devices may support different layout mechanisms to represent textual information, e.g. either as
HTML for a web browser, as plain text in an email, as short message in SMS, RTF in MS Word. The same informa-
tion must either be stored and exchanged in different layouts or it is stored and exchanged in one unique format and
from this format the different layouts are derived.

Solution: The structured information is stored in an document, which supports the representation as XML-text. The
XML-text holds a reference to an XSL document. This XSL document contains a set of layout definitions (so-called
modes). Each layout definition contains a set of rules, that describe how the structured information is represented in
the appropriate format.

The Components

The client sends a document to the connection. The connection requests an XML representation of the document and
retrieves also the XSL layout definition as a referred document. The XML and XSL documents are given to a con-
verter that produces the final layout in the appropriate mode.

3.3 Overview to Classes and Interfaces of the User Ac-
cess Component

The relationship between the classes can be found in Fig. 5 on page 8. A detailed javadoc documentation of all classes
is included in the source code.

3.3.1 Interface UserAccess
The UserAccess

• manages a set of local device gateways

• is able to find and to establish contact to remote device gateways

 A User Access is a service built on top of FlexiNet services. From the agent point of view, it acts as a factory of Connections
which will take place between agents and user. An User Access component typically registers at a know FlexiNet trader with
“UA@nnn.nnn.nnn.nnn” where nnn.nnn.nnn.nnn is the IP-number of this host.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 15

 The main method of the UserAccess is
 public Connection openConnection(ConnectivityDescription ConDes)
 throws DeviceNotAvailable, DeviceError, DeviceTemporaryNotAvailable
 where

• ConDes – a connectivity description of how the user may be reached (device type + number (IP address, phone num-
ber, etc.) + hostname of user-access component). It encapsulated also the required capabilities (audio, text/html, dis-
play size, etc.) of the device to be used in the ConnectivityProfile object.

3.3.2 Class ConnectivityDescription
 The class ConnectivityDescription represents a description of how the user’s end device can be reached. Typically this is a
device type specification together with an identification of the device, e.g. a telephone number. It will be used internally by
User Access and provided as parameter when sending data through the Connection by the agent.

 It consist of three components :

• Device type (e.g. fax, phone)

• Number (e.g. telephone number, fax number, sms number)

• DeviceCapabilities

 The ConnectivityDescription provides access to an object called DeviceCapabilities.

3.3.3 Interface DeviceGateway
A DeviceGateway is an object that is able to establish a virtual connection to the user’s end device. Through this con-
nection information can be transmitted in an appropriate representatcion. A Gateway may be more than a simple de-
vice driver since it can also do format adaptations, etc. Examples for DeviceGateways are FaxModems, VoiceModems,
Interfaces to a WebBrowser, Applets, etc. The DeviceGateway is created by the UserAccess and its main purpose is to
establish a connection to the end-user.

Main method are:
public Connection open(ConnectivityDescription ConnDescr);

Opens a logical connection to the end-user. If the device is output-only, the output may be spooled, i.e. not transmitted
immediately, but with some delay. ConDescr indicates how can the user be reached (device + Number (IP address,
phone number, etc.)

public void destroy();

Destroys the DeviceGateway. Open connections will not be destroyed, however no new connections can be estab-
lished.

public String getType();

Returns the Type of the device (fax, sms, email, ...)
public DeviceCapability getCapability();

Returns the supported Capabilities
public DE.fast.followme.useraccess.SimpleConverter getSimpleConverter();

Returns a simple converter that converts a document to an appropriate external representation for this device.

3.3.4 Interface Connection
The connection represents a temporary "channel" to the end user’s device, e.g. a fax machine, phone, Browser, etc.
through which information can be exchanged.

A connection is requested via the UserAccess component and opened by a DeviceGateway that is identified by the
Connectivity Description. The output is initiated via the send method.

The feedback of the user is reported via the getreferredDocument method to the rendered document. Abnormal Events
like closing or failure can be received by attaching an ConnectionListener.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 16

Major methods:
public abstract void send(Document d) throws DeviceError

Advises the Connection to send the document to the end-user. This could mean that the user navigates through other
documents (e.g. images) referred to by this document.

public abstract void sendraw(ExternalRepresentation er) throws DeviceError

Used to send an external representation through the connection. It is solely in the responsibility of the caller that the
external representation is in a form that can be transmitted to the recipient.

public abstract void close()

Used to close a connection.
public abstract void addConnectionListener(ConnectionListener qs)

Adds a ConnectionListener to get call-back on certain connection events (close, failure).
public abstract void removeConnectionListener(ConnectionListener qs)

Removes a ConnectionListener
public abstract void setQualityOfService(QualityOfService qs)

Sets the quality of service

3.3.5 Interface Document
 A document is a piece of information that can render itself into a set of external representations. It manages references to other
documents. Documents can contain text-like information, images, video, etc. A device gateway first checks whether the
document supports its favourite representation (e.g. HTML for Web-browsers). If not it looks up the XML represnetation fo
the information.

Major methods:
public abstract ExternalRepresentation getExternalRepresentation(MimeType mimetype)
throws MimeTypeNotSupported

 Retrieves the external representation of a document
public abstract MimeType[] getsupportedMimeTypes()

 the MimeTypes that this document supports. e.g. {"text/html", "image/gif"}.
public abstract Document getReferredDocument(String name, Properties params)

 returns the document on which the string name refers to. The result can be e.g. an image. The returned document can be null.
The semantics of this is device-dependent. E.g. a window presenting this document is closed.

3.3.6 Interface ExternalRepresentation
Representation of a document that is exchanged between the application and the connection.
Major methods:

public abstract InputStream getInputStream() throws IOException
 Retrieves the external representation of a document as an (arbitrary long) byte stream.

public abstract MimeType getMimeType()
 returns the MimeType of the document, e.g. text/html or image/gif .

3.3.7 Interface SimpleConverter
Simple converter that constructs a new external representation (on basis of existing representations).
Major methods:

public abstract ExternalRepresentation convert(Document d)
Constructs an external Representation of a document

public abstract MimeType[] requires()
returns the set of MimeTypes-representations to construct new external representations e.g. xml/text.

public abstract MimeType constructedType()
the mime type of the constructed representation

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 17

3.3.8 Interface QualityOfService
 The interface QualityOfService is an interface to an object provided by agents to provide rules to be applied according the
available resources to send/receive data. It will be used internally by user access to send the user appropriate data by taking
decisions according to agent/application provided rules.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 18

4 Device Gateways

This chapter lists the device gateways that have been implemented by the user access components.

The main class of the user access is DE.fast.followme.useraccess.UserAccessStart. The main-method takes as an ar-
gument the name of a property-file that defines what devices are attached to this user access and the properties of
theses devices. Each device is defined by a line “Device<n>=<devicetype>”, where n is a running number, and
devicetype is a string defining the type of the device. The property-file must also define the name of the class file
with <devicetype>.class = <classname>.

Currently implemented Device Gateways are

• Http-Entry Point for WWW-Interfaces like Web-Browsers

• Fax Gateway for Fax-Delivery

• Email Gateway for text mail messages

• SMS Gateway for delivery of short messages to a GSM based cellular phone

• Swing Device Gateway for local document delivery

• Offline HTML Device Gateway for producing an offline readable set of HTML-documents

4.1 Http-Entry Point
The Http-Entry Point employs servlet mechanisms [6] to define a web-based entry-point for FollowMe. It allows access
to a FollowMe application via Web-browsers. Since the entry point to the system is application dependent the two
abstract methods

abstract protected void createNewAgent(HttpServletRequest req, HttpServletResponse res)

abstract protected void SearchAgent(HttpServletRequest req, HttpServletResponse res)

of the Class DE.fast.followme.useraccess.device.httpdevice.HttpEntryPoint must be instantiated, depending on the
application. E.g. CreateNewAgent may contact an agent factory to create a new (application specific) agent, Sear-
chAgent looks up an agent in a application specific directory.

Implementing Class abstract class DE.fast.followme.useraccess.device.httpdevice.HttpEntryPoint

used layout description “” (default), interactive device

Start-up properties #'---
#' Configuration of an http device
#'---

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 19

Device2=http
#'
#' class name of device gateway
#'
http.class=DE.fast.followme.useraccess.device.httpdevice.BavariaOnlineHttpEntryPoint
#'
#' http.port: port to serve
#'
http.port=8888
#'
#' http.documentDir: directory where to find the html-documents
#'
http.documentDir=c:\\Daten\\Michael\\followme\\testenv\\httpGWdocuments
#'
#' http.welcomeFileName: name of welcomeFile in documentDir
#' first page to be presented to the user
#'
http.welcomeFileName=\\Welcome.html
#'
#' http.errorFileName: name of error file in documentDir
#' page to be presented to the user in case of internal errors
#'
http.errorFileName=\\Error.html
#'
#' http.waitFileName: name of wait information page in documentDir
#' page to be presented to the user if user access is
#' waiting for answer from agent
#'
http.waitFileName=\\Wait.html
#'
#' http.controlFileName: name of control information page in documentDir
#' page to steer the opening of additional browser windows
#'
http.controlFileName=\\control.html
#'
#' http.closeFileName: name of page to send, to close window
page to be presented a document window is closed.
Mainly for debugging purposes, the window does not be closed at once
#'
http.closeFileName=\\close.html
#'
#' http.servlet.followme.code: class of servlet to load
#' The servlet forwards all http-requests to the connection
#'
http.servlet.followme.code=DE.fast.followme.useraccess.device.httpdevice.HttpEntryPointServl
et
#'
#
#' http.servlet.followme.initArgs: Initialisation arguments for servlet
#' not used now
#'
http.servlet.followme.initArgs=\
#'
#' The http-EntryPoint can be used in two modes:
#' if pollingSupport = true, a control window in netscape is opened to poll
#' the UA every 10 seconds for commands, as opening
#' a new window
#' if pollingSupport = false, only interactions will happen when the user is
#' loading a new page.
http.pollingSupport = false
#'
#' The http-Entrypoint provides localized error messages (provided, the
#' localized ListResourceBoundle was implemented for this language)
#' Language
http.localeLanguage=de
#' Country
http.localeCountry=DE

4.2 Fax Device Gateway
The Fax Device Gateway is capable to send faxes to a fax device. It uses the “staticHtml” layout mode to render the
documents. Unfortunately it is currently not possible for a java process to print faxes without user-intervention.
Therefore the current implementation uses a Netscape-Browser to print to a Windows-NT based fax device.

Implementing Class DE.fast.followme.useraccess.device.faxdevice.FaxGateway2

used layout description “ staticHtml”, passive device

Start-up properties #'---
#' Configuration of a fax device
#'---
Device3=fax

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 20

#'
#' class name of device gateway
#'
fax.class=DE.fast.followme.useraccess.device.faxdevice.FaxGateway2
#'
#' This fax gateway looks up an http-gateway to render the relevant document
#' to a web browser, which prints it onto a fax printer.
#'
#' fax.command: How to start Netscape with the printing option?
#'
fax.command=C:\\Programme\\Netscape\\Communicator\\Program\\netscape.exe -P\"followme\";
#'
#' fax.faxprog: How to start the fax program
#'
fax.faxprog=C:\\WINNT\\FAXmaker\\SENDFAX.EXE
#'
#' fax.httpConnectionHost: on which host resides the user access maintaining
#' the http gateway?
#'
fax.httpConnectionHost=194.59.176.168

4.3 Email Device Gateway
The Email Device Gateway sends an email to an email address. The email is rendered in “text”-mode. It uses the
SMTP protocol to forward the mail to a mailhost for further processing.

Implementing Class DE.fast.followme.useraccess.device.maildevice.MailGateway

used layout description “text”, passive device

Start-up properties
#'---
#' Configuration of an email device
#'---
Device1=mail
#'
#' class name of device gateway
#'
mail.class=DE.fast.followme.useraccess.device.maildevice.MailGateway
#'
#' mail.sender: Who should be the sender of the mail?
#'
mail.sender=FollowMe UserAccess FAST Munich <UA@followme.fast.de>
#'
#' mail.mailhost: Mail host that supports the SMTP-protocol
#'
mail.mailhost=fast.fast.de
#'

4.4 SMS Device Gateway
The SMS Device Gateway sends an SMS message to a telephone number. The documents are rendered in “shortText”-
mode. The access to the different SMS supporting networks is provider dependent. For each provider the abstract class
DE.fast.followme.useraccess.device.smsdevice.SMSBasicConnection has to be extended for the method

protected abstract void sendSMS(String telnumber, String message);

This method defines how to send a message to a specific network.

At start-up time a specific property file (sms.propertyfile) is loaded. The SMS property file contains a mapping be-
tween prefix codes and concrete Connection classes that implement the sending of a message. Also the sms property
file contains further initialisation parameters.

Implementing Class DE.fast.followme.useraccess.device.smsdevice.SMSGateway

used layout description “shortText”, passive device

Start-up properties
#'---
#' Configuration of an SMS device
#'---
Device4=sms
#'
#' class name of device gateway
#'

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 21

sms.class=DE.fast.followme.useraccess.device.smsdevice.SMSGateway
#'
#' sms.propertyfile Configuration file for the SMS gateway
#'
sms.propertyfile=W:\\followme\\fast\\TestStarts\\smsgateway.properties

4.5 Swing Device Gateway
The Swing Device Gateway uses swing-classes ([12]) to render documents directly in a window of a java virtual ma-
chine. It is based on the HTML-EditorKit of swing. Currently this editor-kit supports HTML3.2.

Implementing Class DE.fast.followme.useraccess.device.swingdevice.SwingEntryPoint

used layout description “ ” (default), interactive device

Start-up properties
#'---
#' Configuration of an swing device
#'---
Device5=swing
#'
#' class name of device gateway
#'
swing.class=DE.fast.followme.useraccess.device.swingdevice.SwingEntryPoint
#'
#' if displayEntryPointWindow = true then a entry point window is opened
#' at start up
#'
swing.displayEntryPointWindow=true
#'

4.6 Offline HTML Device Gateway

This gateway saves a set of document as HTML-documents to the local file system, in order to make it readable off-
line. A user can e.g. use an agent to download the latest newspaper onto its notebook in order to read it offline.

The device gateway takes the initial document, and computes the transitive hull of all documents referred to. It then
converts these documents to HTML and saves it to a given file location.

Implementing Class DE.fast.followme.useraccess.device.offlinehtmldevice.OfflineGateway

used layout description “ ” (default), passive device

Start-up properties
#'---
#' Configuration of an offline html device
#'---
Device6=offline
#'
#' class name of device gateway
#'
offline.class=DE.fast.followme.useraccess.device.offlinehtmldevice.OfflineGateway
#'
#' define a list of those HTML tags that should be replaced by local references
#'
offlinehtml.tag.a=href
offlinehtml.tag.img=src
offlinehtml.tag.body=background
offlinehtml.tag.embed=src
offlinehtml.tag.bgsound=src
offlinehtml.tag.table=background
offlinehtml.tag.tr=background
offlinehtml.tag.td=background
offlinehtml.tag.th=background
offlinehtml.tag.head=profile
offlinehtml.tag.link=href
offlinehtml.tag.blockquote=cite
offlinehtml.tag.area=href
offlinehtml.tag.input=src
offlinehtml.tag.frame=src

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 22

offlinehtml.tag.iframe=cite
offlinehtml.tag.object=data
offlinehtml.tag.layer=src
offlinehtml.tag.script=src

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 23

5 Examples

5.1 Example Use of the User Access by an Agent
The following is a simple Agent that, when contacted by the user retrieves the current value of the Oracle Shares and
sends it to the user. For details see the source file of DE.fast.followme.tests.Orcl in the source code distribution.

This example creates the respective documents by loading the respective XML and XSL templates from the file space
and forwards them to the user-access

public class Orcl extends MobileObject implements OrclIface
{

public Orcl ()
{

// internal creation stuff
}

// ...

/**
* rudimentary implementation of contactUser
*/
public void contactUser(Connection c)
{

try
{ // create a new Document that contains the Orcl-value

c.send(new OrclDoc("index.xml"));
Debug.trace(this, "Initial document created and sent");

}
catch (Exception e) {

Debug.trace(this, "Exception: " + e.getMessage());
e.printStackTrace();}

}

// returns a report to a device described in the ConnectivityDescription

public void makeReport(ConnectivityDescription ConnDescr)
{

try
{ // find the FlexiNet-trader

FNetTrader trader = UK.co.ansa.flexinet.test.FNetTest.getTrader();
 // find the UserAccess

UserAccess UA=(UserAccess)trader.get

("UA@"+InetAddress.getByName(ConnDescr.getHost()).getHostAddress());
 // request the opening of the connection

Connection c= UA.openConnection(ConnDescr);
 // send document

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 24

c.send(new OrclDoc("index.xml"));
}
catch (UK.co.ansa.flexinet.core.FlexiException e)
{Debug.trace(this, "Error FlexiException " + e);e.printStackTrace();}
catch (java.net.UnknownHostException e)
{Debug.trace(this, "Error UnknownHostException " +

e);e.printStackTrace();}
catch (Exception e)
{Debug.trace(this, "Error Exception " + e);e.printStackTrace();}

}
}

/**

class OrclDoc implements Document

{
String fname;
MimeType mimetype;
Hashtable parameter;

public OrclDoc(String name)
{

Debug.trace(this, "Now creating document " + name);
if (name.equals("")) name = "index.xml";

mimetype =
DE.fast.followme.useraccess.device.httpdevice.HttpUtils.guessContentTypeFromName(name);

if (name.equals("index.xml") || name.equals(""))
{

/* Create an XML-file that contains the right values */
}
else /* all other documents are read from the filespace
{

mimetype =
DE.fast.followme.useraccess.device.httpdevice.HttpUtils.guessContentTypeFromName(name);

fname = DE.fast.followme.tests.Orcl.DocDir+name;

}

}

/**
* Retrieves the external representation of a document
*/
public ExternalRepresentation getExternalRepresentation(MimeType mt)
{

return new ExternalRepresentation()
{

public InputStream getInputStream() throws java.io.IOException
{

try
{ // FlexiNetInputStream3 is an InputStream that
 // works through FlexiNet Bindings

return new FlexiNetInputStream3(...)
}
catch(IOException io_e)
{

throw new java.io.IOException("IOException:"+io_e);
}

}

public MimeType getMimeType()
{ return mimetype;}

};
}

/**
* returns the list of supported MIME-Types
*/

public MimeType[] getsupportedMimeTypes()

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 25

{
return new MimeType[] {mimetype};

}

public Document getReferredDocument(String name, java.util.Properties params)
throws DocumentNotFound

{
if (name.equals("close")) return null;
else return new OrclDoc(name);

}

}

5.2 How to use XML and XSL

This section gives an extensive example on how to employ XSL-techniques to define layouts that are rendered by the
user access.

It assumes familiarity with the XML and XSL specifications ([10], [8]). More information about XSL is available at
[11].

The debugging of complex XML and XSL statements can be quite troublesome. To check XML and corresponding
XSL-files there is a java class DE.fast.followme.tests.XMLtest. It can be started by:

 java DE.fast.followme.tests.XMLtest [-M<mode>] <xml-filename> [<xsl-filename>]

5.2.1 XML Example
The following example shows a (simplified) XML representation of a newspaper (taken from the ETEL++ pilot appli-
cation). The newspaper contains a set of articles. Articles contain a classification <CLASSEMENT> and the body
<DONNEE>. The body contains the title <TITRE>, subtitle <SURTITRE>, etc. followed by the text <TEXTE>. The
body can contain text and photos.

<?xml version="1.0" ?>
<?xml-stylesheet href="newspaper.xsl" ?>
<NEWSPAPER>
<ARTICLE>
<CLASSEMENT>
<NOM></NOM>
<AUTEUR></AUTEUR>
<DATE></DATE>
 <LISTE_MOTSCLE>
<MOTSCLE>Quotidien</MOTSCLE>
<MOTSCLE>UNE</MOTSCLE>
<MOTSCLE>Spectacle</MOTSCLE>
 </LISTE_MOTSCLE>
<GEOGRAPHIE>
<PAYS>France</PAYS>
<REGION>Bretagne</REGION>
<LOCALITE>Briec</LOCALITE>
</GEOGRAPHIE>
<POIDS>50</POIDS>
</CLASSEMENT>
<DONNEES>
<SURTITRE><![CDATA[Portes ouvertes a l'espace Xavier-Rousseau, samedi]]></SURTITRE>
<TITRE><![CDATA[Decouvrir les activites de l'EXR]]></TITRE>
<CHAPEAU><![CDATA[Pour la premiere fois, l'Espace Xavier-Rousseau ouvre ses portes au
public, samedi 20 juin, pour faire decouvrir les activites menees par les differents
animateurs. Un spectacle de danse cloturera cette journee, salle de La
Bayard.]]></CHAPEAU>
<RESUME><![CDATA[Decouvrir, regarder, jouer, participer ou bien applaudir... Voila ce
qui est propose par l'Espace Xavier-Rousseau, le samedi 20 juin, lors de l'operation
 portes ouvertes .
De 13 h a 18 h, que vous te journee, salle de La Bayard.]]></RESUME>

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 26

<TEXTE><![CDATA[Decouvrir, regarder, jouer, participer ou bien applaudir... Voila ce
qui est propose par l'Espace Xavier-Rousseau, le samedi 20 juin, lors de l'operation
portes ouvertes .
De 13 h a 18 h, que vous soyez jeunes ou moins jeunes, vous serez accueillis par les
permanents et animateurs de l'association qui ne manqueront pas de vous presenter leurs
ateliers. Qu'il s'agisse d'activites d'expression corporelle, telles que theatre,
danse, de musique ou bien manuelles, le choix est important.
Expos et videos
 Des expositions presentant les activites randonnee, anglais, yoga, peinture... seront
proposees, ainsi que des videos sur les cours de gymnastique adultes et retraites,
cours d'eveil de danse, explique un des permanents de l'association. Toutes les
activites ne se derouleront pas dans nos locaux. Par exemple, une seance d'aquagym aura
lieu de 14 h 30 a 15 h 30 a la piscine.
En effet, il sera possible de decouvrir le billard, a la Maison des associations, de 14
h a 18 h. Les amateurs d'escalade devront se rendre place de la Gare, sur le parking de
la salle Jean-Lenoir, entre 13 h 30 et 15 h ou de 16 h 15 a 18 h.
Un spectacle de danse intitule Les coups au coeur des Tarabiscotes , salle de La
Bayard, a 20 h 30, cloturera cette journee. Pendant ce temps l'orchestre La Medina
participera a la Fete de la musique et se produira devant les locaux de
l'association.]]></TEXTE>
<LEGENDE>Une apres-midi portes ouvertes est organisee a l'Espace Xavier-Rousseau,
samedi 20 juin.</LEGENDE>
<PHOTO>al04g207_19980616.jpg</PHOTO>
</DONNEES>
</ARTICLE>
</NEWSPAPER>

The first line contains an indication that this is an XML document and a version number.

The following line defines a reference to the corresponding xsl-document. If this reference is omitted then the refer-
ence “index.xsl” is assumed.

5.2.2 XSL example
 The following example shows an XSL file that maps the previous newspaper to different results depending on the required
mode. Supported modes are

“ ”(default): for devices which can understand full HTML, e.g. Browsers (and fax gateways, because the spe-
cific mode “staticHtml” is not defined.

“text”: for devices which can understand only text, e.g. mail

“shortText” : for SMS and similar devices with limited text capabilities

The example constructs three types of layout:

The HTML layout (which is also a staticHtml layout) represents the newspaper with all articles and images. The text
layout contains the title, the bodies, and for each photo only the alternative text. Finally there is a shortText layout that
presents only the headings of the top important articles. 6

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<!-- the root rule for HTML -->
<xsl:template match="/">
 <html> <!-- here comes lots of HTML stuff surrounding the body -->
 <head> <title>FollowMe - NewsPaper Page</title> </head>
 <body background="http://www.fast.de/FollowMe/grafik/musterL.gif"
 link="#0000ff" vlink="#ff0000" alink="#800000">
 <table border="0" width="600">
 <tr>
 <td width="227" height="114" valign="top">
 </td>
 <td width="365" valign="top">
 Example of a nice newspaper

<!-- here comes the contents: Write only the data -->

6 Please note that the XSL syntax follows the syntax of the XSL proposal [8]. The XSL working group has established a working

draft [9]. Although this version has not changed in spirit, it has substantial changes in the syntax. As soon as java-based convert-
ers are available, the user access will provide a migration path to the new version.

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 27

<xsl:for-each select="ARTICLE">
<xsl:apply-templates/>

</xsl:for-each>
 </td></tr>
 </table>
 </body>
 </html>
</xsl:template>

<!-- the root rule for short text (SMS): Only produce the headings of the top news
 separated by comma -->

<xsl:template match="/" mode="shortText">
 Top headings:

<xsl:for-each select="ARTICLE">
<xsl:for-each select="DONNEES">

<xsl:for-each select="TITRE">
 <xsl:apply-templates mode="shortText"/>,

</xsl:for-each>
</xsl:for-each>
</xsl:for-each>

</xsl:template>

<!-- the root rule for mode text -->
<xsl:template match="/" mode="text">

<xsl:apply-templates mode="text"/>
</xsl:template>

<!-- standard mode -->

<xsl:template match="DONNEES">
 <xsl:for-each select="TITRE">

<H1><xsl:apply-templates/></H1>
 </xsl:for-each>
 <xsl:for-each select="SURTITRE">

<BOLD><xsl:apply-templates/></BOLD>
 </xsl:for-each>

<!-- xsl:foreach ... further elements ... -->
 <xsl:for-each select="TEXTE">

<HR/><xsl:apply-templates/>

 </xsl:for-each>

</xsl:template>

<xsl:template match="PHOTO">

</xsl:template>

<!-- text mode -->

<!-- In text mode: Just give Title and text body process the articles -->
<xsl:template match="ARTICLE" mode="text">
 <xsl:for-each select="DONNEES/TITRE">

<xsl:apply-templates mode="text"/>
 </xsl:for-each>:

 <xsl:for-each select="DONNEES/TEXTE">
<xsl:apply-templates mode="text"/>

 </xsl:for-each>:
</xsl:template>

<xsl:template match="PHOTO" mode="text">

--- Photo cannot be displayed ---

</xsl:template>
</xsl:stylesheet>

 ID: DH6.3 ESPRIT Project No. 25 338 - FollowMe

18.05.99 Work package H Page 28

6 References

[1] DH2, User Access Requirements, M. Breu, A. Sindermann, E. Triep, December 1997.
[2] DD6.2, DE5.2, DF5.1 & DF5.2: Agent Framework: Software Reports, S. Battle, N. Taylor, J. Tidmus, M. Yearworth,

October 1998
[3] FlexiNet Documentation (by ANSA)
[4] DB7.4 & DB 8.3: ”Mobile Object Workbench Software Report”.
[5] Servlet Tutorial, Sun Microsystems, http://java.sun.com/products/jdk/1.2/docs/ext/servlet/servlet_tutorial.html
[6] The Java Servlet API, http://java.sun.com/marketing/collateral/servlets.html
[7] Introduction to the New AWT Event Model, Sun MicroSystems,

http://java.sun.com/docs/books/tutorial/ui/components/eventintro.html
[8] XSL: A Proposal for XSL (http://www.w3.org/TR/NOTE-XSL.html)
[9] Extensible Style Sheet Language (XSL), Version 1.0, W3C working draft, 18. Aug. 98, http://www.w3.org/TR/WD-xsl
[10] XML: Extensible Markup Language (XML) 1.0, W3C Recommendation 10-February-1998

(http://www.w3.org/TR/1998/REC-xml-19980210)
[11] http://www.w3.org/Style/XSL/
[12] The Swing Connection, http://java.sun.com/products/jfc/tsc/
[13] Design Patterns Elements of Reusable Object Oriented Software. E. Gamma, R. Helm, R. Johnson, J. Vlissides.

Addison Wesley 1995. ISBN 0-201-63361-2
[14] DA 1.3, Architecture Release 1.3, Will Harwood

