
Follow Me Project

Work Package L

Project Management

Final Report

ID: DL4 Date: 28.3.99

Author(s): M. Breu, Fast e.V. & the
FollowMe Team

Status: draft

Reviewer(s): FollowMe Board Distribution: project and CEC

ID: dl3.doc Follow Me Project

17.03.99 ii M. Breu

Change History

Document Code Change Description Author Date

dl3.doc First version, with raw input from partners M. Breu 3.3.99

dl3.doc First complete version M. Breu 28.3.99

dl4.doc Corrected Internal Renumbering according to
TA, incorporated final remarks from partners

M. Breu 1.4.99

ID: dl3.doc Follow Me Project

01.04.99 3 of 63 The FollowMe Team

Contents

1 Executive Summary... 5

2 Project Results... 7

2.1 The FollowMe Architecture ...9

2.2 The Mobile Object Workbench and the Information Space...11

2.3 Agent Framework ...19

2.4 Service Deployment ...23

2.5 User Access ..25

2.6 The Bavaria-Online Pilots ..34

2.7 The ETEL++ Pilot Application ..39

2.8 Conclusions ..41

3 Project Execution .. 42

3.1 WP A, B, and C : Architecture, Mobile Object Workbench, Information Space.........42

3.2 WP D, E, F: The Agent Framework ...44

3.3 WP G: Service Deployment ...46

3.4 WP H: User Access ..48

3.5 WP I: The Bavaria-Online Pilots..48

3.6 WP J: ETEL++ Pilot Application...50

4 Exploitation activities.. 52

4.1 Citrix Exploitation Activities..52

4.2 FAST Exploitation Activities ...53

4.3 INRIA Exploitation Activities..54

4.4 UWE/ICSC Exploitation Activities..54

4.5 TCM Exploitation Activities ..54

5 Deliverables ... 56

5.1 Final Reports...56

5.2 Deliverable Status...56

Annex A ... 60

Project Meetings ...60

Roster of Personnel on the Project ...60

References .. 63

ID: dl3.doc Follow Me Project

01.04.99 4 of 63 The FollowMe Team

ID: dl3.doc Follow Me Project

01.04.99 5 of 63 The FollowMe Team

1 Executive Summary

Mobility and communication are an essential property of the modern information society.
Business and personal live is changing under the emerging influence of the internet and the
world wide web.

Many users are restricted to exploit the full potential of the internet as they can only perform
actions while logged on. They have no ability to perform searches or interact with other
services while disconnected. In addition, all information must be maintained and transported
in the users’ personal computer. This restricts the amount of data they can store and makes
sharing and updating almost impossible.

FollowMe provides the mechanisms and infrastructure to support mobile users, their data and
their objectives. It employs mobile agent technology to achieve goals without the need to
constantly direct decisions. This allows users to have tasks performed while disconnected. It
enables services such as stock prices and event announcements to be monitored or even have
a tailored version of the daily newspaper produced.

Underpinning these agents, it the users’ own mobile information space. Users are able to gain
access from any location and are presented with a seamless view of their data. The FollowMe
framework provides the storage and management functions which enables the position of
disparate data to be transparent to the user. Information is kept securely on the network and
can be automatically re-distributed to reflect the mobility and working partners of the owner.

The ability to organise, search, monitor, access and share information, irrespective of location
is clearly an extremely powerful facility. This combined with agent technology makes the
range of FollowMe applications potentially huge. Applications could range from distributed
databases such as medical records, through to domestic goods and services such as travel
agents and financial information. Possible users are mobile executives, companies with
network computers and domestic users with set-top boxes.

The concepts and the infrastructure developed through the FollowMe project has manifested
in the following results:

1. the componentarchitecture for distributed mobile applications that includes object
mobility and distribution control, a framework for autonomous agent, and user access
facilities. The architecture is presented as a catalogue of design patterns for distributed
applications in project deliverable DA1.3.

2. the infrastructure prototype, providing a complete basic architectural component
framework for FollowMe application, to be integrated into marketable products for
servicing mobile agents. The SW components of the infrastructure prototype are available
together with the respective documentation.

3. twopilot application that demonstrate the architecture and the components.

4. a set ofpublic reports on the architecture, user needs, implementation guide, and the
pilots. An overview is presented in this document.

ID: dl3.doc Follow Me Project

01.04.99 6 of 63 The FollowMe Team

This document gives an overview to the results and describes the major design decisions
taken during the progress of the project. It finally gives also an overview to the exploitation
activities of each partner and the formal status of the deliverables.

ID: dl3.doc Follow Me Project

01.04.99 7 of 63 The FollowMe Team

2 Project Results

The FollowMe architectural framework organises the components into a structure that is
represented by Fig. 1:

• Two basic layers that support elementary services, as mobility, distribution and
persistency

• A set of components providing higher level services to the applications, as the agent
framework, service deployment facilities and user access through a broad variety of
device types.

• Components implementing application logic, built on top of this service infrastructure

A
utonom

ous
A

gents

S
ervice

Interaction

P
ersonal

P
rofiles

S
ervice

D
eploym

ent

Application

U
ser

A
ccess

Mobile Object Workbench
Information Space

D FE G

I, J

H

B
C

Agent Framework

Fig. 1 Architectural Framework Components

The mobile object workbench(MOW) provides the basic platform for mobility. A mobile
object resides at a “place”. A place provides the minimal environment for a mobile object to
live in and an infrastructure to move to other places. It also provides mechanisms for location
transparent references for mobile objects. A place itself can be mobile, e.g. when it resides on
a notebook, it can disconnect from the internet and reconnect on another geographical
location. This is a typical case for a mobile user.

The Information Spacecomponent provides services to persistently store objects and retrieve
them in a distributed environment. The Information Space may provide transparent replication
services on objects, in order to optimise access from different locations. The information
space encapsulates store and backup facilities to be able to recover mobile agents after a
system crash. Both components are described in section 2.2.

During the evolution of the project it turned out quite early that the componentsautonomous
agents, personal profile, and service interactionhas to be treated as oneagent framework.
This framework is presented in section 2.3.

ID: dl3.doc Follow Me Project

01.04.99 8 of 63 The FollowMe Team

The autonomous agentsare operating on top of the MOW. Autonomy means that the agent
has the decision how to react on external events. The only decision a place can enforce on an
agent is its destruction. Agent execute missions defined in scripts. An agent is equipped with
a profile that holds its characterising data.

Agents interact with each other. The interaction with (non-mobile) services is provided by
service interaction interfaces that act as service proxies. These proxies can be contacted by
agents to query a service. An agent can also subscribe to a service, in order to be informed
when a certain state change occurs.

A special type of agent is apersonal assistant, which is directly associated to a user. The
personal assistant manages apersonal profilethat holds all relevant personal information
about the user. The personal profile contains simple items like the user’s name and address,
but also a diary of its user, i.e. a schedule via which devices a user can be contacted, in order
to send him e.g. a fax or an SMS message. The persistent data components of all profiles in
the FollowMe environment are implemented in XML, all agents are capable of parsing XML
and all instructions on how to interpret XML data stored in the profiles are implemented using
a scripting language. The user access provides service to map raw XML data into layouts
appropriate for certain devices.

The service deploymentcomponent (section 2.4) applies data mining techniques on resource
consumption measures to optimise the availability of objects on different locations, e.g. by
directing the replication service provided by an information space.

Finally theuser access(section 2.5) allows a mobile agent to contact its user. Communication
media could be e.g. a web-browser, a personal digital assistant (PDA), a fax, or phone. Two
types of devices are distinguished:

• Passive devices: These devices will only support system output (i.e. sending a fax or a
phone message), thus the agent is able to send the user regularly reports or just the
request to contact him, because the agent needs user interaction. These devices are used
for off-line communication with the user.

• Interactive devices (i.e. Web browsers): These devices will be used to interact with
FollowMe agents, e.g. by HTML forms. Through these devices users can typically
command its agents.

FollowMe has developed a set of demonstrators, which are presented in the sections 2.6 and
2.7: In co-operation with the Bavarian Citizen network (“Bürgernetze”) two pilot applications
were developed, a regional events notification service and a portfolio management and alarm
system. Both demonstrate features for individualisation of web based services and an active
presence in the internet by agent technology.

The second demonstrator, developed in co-operation with the French newspaper France
Ouest, implements an individually tailorable newspaper service.

The next section presents this architecture and the interplay of the components in more detail.

ID: dl3.doc Follow Me Project

01.04.99 9 of 63 The FollowMe Team

2.1 The FollowMe Architecture

2.1.1 Background
FollowMe provides a component architecture for the development of distributed mobile
applications. A significant part of this architecture is associated with supporting the mobile
user. A mobile user is a user that is not permanently connected to the Internet and does not
have a fixed home machine or location. Mobile users wish tasks to be performed while they
are disconnected from the Internet and wish results to be delivered to whatever device they
have available when they (re) connect. Ideally they wish to use commonly available facilities
such as faxes and mobile telephones, as well as workstations and laptops, to interact with
Internet services. Moreover should services require further user actions while the user is
unavailable the user would like tasks to proceed autonomously by providing “sensible”
defaults and taking “sensible” decisions in the absence of the user.

The purpose of the Architecture work-package in the FollowMe project (WP-A) was two-
fold:-

• at the outset of the project to scope the division of work between partners into basic
components with well defined interfaces and relationships; in this respect the architecture
description is a reflection of the planning work done by the partners during the project
proposal stage, and during the first phase of design

• as the project progressed, the architecture description was updated and refined in the light
of ongoing design reviews to become a repository of design expertise assembled by the
project, which we felt would be of value of others following in our steps. In doing so we
looked for the re-usable elements of our overall system design.

The Architecture deliverable is a report containing:

• a collection of concepts (i.e., an ontology) that is used in the description of FollowMe
components and applications in other deliverables. The ontology of FollowMe was
developed from the ISO/ITU Reference Model for Open Distributed Processing, The
Object Management Group’s CORBA specifications and Javasoft’s Java specifications.
The ontology includes the overall system model

• a discussion of the need for loose coupling at many levels between components in mobile
agent systems and guidelines for achieving loose coupling through a consistent use of
encapsulated object-based approaches to implementation.

• A series of patterns abstracting out common design principles that feature in the
FollowMe components. A pattern is an approach to solving a specific kind of recurring
problem in a specific context. Patterns are not simply pieces of code – they are fragments
of analysis and design. Patterns are increasingly used in object-oriented systems to unify
the approaches to design across levels of detail.

FollowMe augments the ODP / CORBA of distributed computing with two powerful new
paradigms for information systems. The first paradigm is object mobility. Object mobility
allows programmers to produce systems in which objects with state can move around a
computer network. The second paradigm is agency. Agency means that programs act
autonomously on behalf of users and so may make decisions when the user is not connected.
Indeed one major decision that often needs to be made is how to connect to the user at a
specific time to deliver a specific piece of information.

ID: dl3.doc Follow Me Project

01.04.99 10 of 63 The FollowMe Team

2.1.2 System Architecture
The FollowMe system architecture is best described using the scenario illustrated in the figure
below.

Agent
Place

Agent
Place Agent

Place

Agent
Place

Agent
Place

Agent
Place

Task Agent
Task Agent

Service ServiceService Service

User's Phone / SMS

Fax 089/123456

User's Desktop

User Access

Personal Profile

Agent
Place

Agent
Place

Personal
Assistant

Task Agent

Agent TraderService Interaction

A user wishes to locate some information on the Internet. The user does not wish to perform
the search himself by browsing the web but rather wishes an agent to perform the search for
him and contact him with the information when the search is complete. The user connects to
his “personal assistant” agent to create a search task. The personal assistant contacts an agent
trader to find appropriate search agents to perform the search task (these agents are called task
agents). Generally the user will provide some specific information and the personal assistant
will fill in defaults using the users “personal profile” which is a collection of information
about the users preferences, contact addresses etc. The personal assistant will then act as
contact point for the task agents to supply any additional information when the user logs off.
The user logs off and the task agents are deployed to perform the search. The task agents may
search by remotely contacting services provided at various host sites or they may move to
remote sites and perform searches directly on the host, or generally from a geographically or
computationally favoured location. Once the task agents wish to report back they contact the
personal assistant. The assistant queries the personal profile data to discover how the user
wishes to have the data delivered. This may vary according to the nature of the data
(hypertext, simple text, etc.), the volume of the data, the time of day, the preference structure
set up by the user between modes of available delivery etc. The personal assistant then uses
the “user access” component of the agent framework to deliver the data to an appropriate
choice of device in an appropriate rendering. The user access component allows the delivery
of data to the user to be substantial independent of the device it is delivered on. So, for
example, the use may receive a short telephone message to inform him that interactively
browsable data is available the next time he has access to a browser. The message might also
contain a short summary or key piece of information (e.g. the message may contain the best
match to search criteria and indicate that all matches are available for viewing with a web
browser when the user can get to an appropriate terminal.

ID: dl3.doc Follow Me Project

01.04.99 11 of 63 The FollowMe Team

The infrastructure supporting the picture above is portrayed schematically below.

The agent layer is supported by the mobile object workbench and information space
infrastructure (MOW/IS). MOW/IS provide a general mobile, distributed programming
model. This model implements the idea of “clusters” from ODP to realise the notion of a
collocated and uniformly managed group of objects. References between clusters are location
independent. All references to agents, traders, etc. are location transparent references. The
personal information space is an instance of the general information space infrastructure,
which itself is realised as a cluster with a management policy for persistent storage. Agent
mobility is built upon the object mobility, which again is realised as a cluster with appropriate
management for copying object code and state from one place to another.

Agent
Trader

Agent
Trader

Name
Trader

Name
Trader

Service

Task
Agent

Personal Assistant

Host

Host

Host

Task
Agent

Service Host

Remote
Service
Access

Local
Service
Access

Information Space
Host

Local
File
System

User's Phone
/ SMS

Fax

User's
Desktop

User
Access Cluster

Cluster

Cluster

Cluster

2.2 The Mobile Object Workbench and the Informa-
tion Space

The aim of these tasks was to show how the concepts of component-oriented system could be
applied to produce efficient re-configurable, extensible middleware platforms in general and
to support intelligent mobile agents and user access components resulting from tasks D and E
in particular.

FlexiNet provides both a generic middleware framework and a set of engineering components
to populate it. By making appropriate choices of which components are assembled within the
framework a variety of different middleware facilities can be achieved including mobile
objects, persistent objects, secure objects and transactional objects.

FlexiNet represents an evolutionary step from contemporary CORBA, Java Remote Method
Invocation and Enterprise Java Bean (EJB) middleware. It is a full demonstration of the
ANSA architectural principles at work.

ID: dl3.doc Follow Me Project

01.04.99 12 of 63 The FollowMe Team

FlexiNet is particularly suited to applications that are deployed in a variety of different
contexts (e.g., on the Internet, in Intranets or Extranets) since its enables the infrastructure to
be tailored for the specific needs of each deployment and for inter-operability between
application components in different environments. Mobile intelligent agent systems are an
important example of the need for these capabilities – agents may migrate between intranets,
extranets and Internets with different network security and quality of service characteristics.

FlexiNet is built in Java because it provides platform portability, object-orientation for
developer productivity, facilities for dynamic linking components from different sources and
reflection and introspection to allow applications to discover and adjust middleware
components to fit their needs. Java has an increasing role as the language of choice for
distributed applications development.

2.2.1 Capabilities
The heart of FlexiNet is a remote procedure call (RPC) system for remote invocation of
services implemented as interfaces on Java objects. In this respect FlexiNet is similar to
CORBA and RMI. FlexiNet allows both object-by-value and interface-by-reference parameter
passing. It uses introspection and dynamic code generation and linking in place of off-line
stub generation.

The implementation of the RPC infrastructure is based in terms of sets of components called
binders, which implement RPC semantics over underlying transport systems. In addition to
FlexiNet specific binders, there is an IIOP binder that implements the OMG IIOP standard
protocol to enable inter-working with CORBA clients and servers.

A simple Trader is provided to enable FlexiNet clients to locate FlexiNet servers.

A mobile object workbench sub-system is provided. This allows “clusters” of Java objects to
move from one “place” (computer) to another. This sub-system was developed to enable
support of mobile intelligent agents in the FollowMe project.

A persistent information space sub-system is provided. This allows clusters of Java objects to
be removed from the execution environment and placed in storage until next activated. The
persistent information space provides an “object file system” for the mobile agents of the
FollowMe project.

A basic object location service is provided, principally to support tracking of mobile objects
and persistent objects.

A class repository sub-system is provided which enables classes to be dynamically linked
across networks and locally cached, with advanced facilities to manage name clashes that
might arise in federated environments. This allows mobile agents to “drag” their infrastructure
with them as the transit networks.

A visual application builder and associated infrastructure components are provided to enable
transactional Enterprise Java Beans to operate in the FlexiNet environment. These facilities
enable transactions to be used to enable objects to manage concurrent access and recover from
failures transparently. The FlexiNet transaction infrastructure is more powerful than current
EJB implementations because it includes the transaction facilities within the infrastructure
rather than offloading transaction control to a database management system.

Security is provided primarily in the form of an implementation of the SSL protocol as an
additional binder. This can be used both for secure access control and secure communication.

ID: dl3.doc Follow Me Project

01.04.99 13 of 63 The FollowMe Team

Strong encapsulation is an intrinsic feature of the FlexiNet framework. In addition, there is a
design for secure carriage of mobile objects across trust boundaries.

Basic support for high availability is provided as a binder for a reliable multicast protocol
between members of an object group. This implementation is currently incomplete, but
includes sufficient components to give a proof of concept.

Finally a declarative configuration tool for assembling components into binders using the
FlexiNet framework called “Blueprints” is provided.

2.2.2 Why a new platform?
The FlexiNet platform grew out of dissatisfaction with industrial middleware platforms and
mobile object infrastructures as possible foundations for FollowMe.

We therefore begin the description of FlexiNet with a review of the limitations of existing
middleware.

Generally, research middleware platforms provide application programmers with facilities for
just one model for distributed programming, for example remote procedure call, or message
passing or process groups. Consequently, compact, efficient and scalable implementations are
often achieved. By contrast, industrial middleware platforms address the need for a ubiquitous
infrastructure and provide an integrated set of capabilities including, for example,
transactions, replication, authentication, privacy, auditing and others. The result is typically
monolithic, inefficient and complex.

Since different applications require different combinations of middleware features, a
compositional approach in which only the middleware services needed by an application need
be made available is appropriate. In CORBA, for example, a set of nested choices is offered
as CORBA “Object Services”. Each Object Service extends the core Object Request Broker
with additional capabilities such as persistence and transactions. The benefit of the CORBA
framework of Object Services is that it is comprehensive. The disadvantage is that it is
unnecessarily rigid because the order in which capabilities have to be assembled is fixed and
this rules out some implementation choices. Moreover, the core Object Request Broker is
required to contain support for the data structures and protocols required by each Object
Service whether it is used or not. Thus, in addition to causing bloat and inefficiency in the
implementation, developers are forced to manage more capabilities than they necessarily need
in any particular situation.

A further aspect of inflexibility comes from the use of stubs in Object Request Brokers to
provide access transparent invocation. A stub converts an invocation into an untyped byte
array representation to be passed on to a communications layer in the case of a remote service.
Discarding language level typing and introspection facilities in this way, makes it hard to
provide developer-written protocols and mechanisms that can coexist with standard stubs.
Specifically, it can be difficult to tie together application level events, middleware events and
communications events. For example, The Iona ORBIX Object Request Broker provides
filters and transformers as a means to modify how communication events are handled.
However, no conventions or data structures are defined for relating filter events (i.e., pre-stub
events) to transformer events (i.e., post-stub events). Behaviour at the filter level is modelled
by CORBA type codes and dynamic type checking of these has to be managed by the
developer rather than delegated to the programming language.

Inherent in the design of distributed systems is the need to make appropriate trade-offs
between the competing goals of abstraction and application control. Abstraction in

ID: dl3.doc Follow Me Project

01.04.99 14 of 63 The FollowMe Team

middleware is generally associated with distribution transparency. Abstraction/transparency
makes life easier for developers by hiding the engineering details of interaction models behind
a generic invocation interface (e.g., method invocation). In essence, the infrastructure
manages distribution. Application control, by contrast, allows developers to optimise the
infrastructure when it is beneficial to do so, for example by providing heuristics for error
cases. Control requires that implementation aspects of a distribution transparency should be
exposed. Unfortunately current systems either impose a ‘one size for all’ transparency or
expose the low level ‘systems’ mechanisms in all their complexity.

Because of the issues outlined above, mobile agent infrastructure developers have been faced
either with building their infrastructure as a stand-alone technology or as a layer above
middleware. This has led to poor integration between agent facilities and distributed
computing facilities, with duplication of function and impoverished computational models for
agents (e.g., no type checking, no selective transparency, scalability limits).

2.2.3 FlexiNet Architecture
FlexiNet was designed ‘from the ground up’ to address all of the concerns described in the
previous section. Whilst we wished to support interoperability with existing systems, and
conform to, or extend, existing standards, these were secondary goals. FlexiNet grew out of
dissatisfaction with current offerings, and a clean slate provided the opportunity to build a
coherent architecture according to ANSA principles.

FlexiNet was developed to beJava specific. This allowed us to leverage the facilities provided
by Java to provide a clean architecture and straightforward API. In particular facilities such as
objects by value, subclassing of argumentsand dynamic late linkingare used in our
architecture to simplify many aspects of the design, and to help make FlexiNet extensible.
This choice was compatible with the World-Wide Web orientation of the FollowMe project
and the goals of the other project partners.

FlexiNet was developed on NT 4.0 and Solaris using Sun’s JDK1.1.7.

Where possible we reused existing concepts and principles in the design of FlexiNet:

ODP Reference Model:
The computational model from RM-ODP was uses as a basis for the programmer interface.
Additionally, a number of RM-ODP engineering model concepts were reflected into the
computational model. The ODP notion of interfaces and objects was used, and ODP clusters
were implemented to provide encapsulation.

Java Language
We attempted to keep the FlexiNet API and remote object semantics as close to normal Java
as possible. In particular, we use Java interface classes rather than IDL files, as this is more
natural for a Java programmer.

Build for Change
FlexiNet was designed to be constantly upgraded and changed. We attempted to minimise the
amount of ‘global knowledge’ and interdependencies between components, so that parts could
be replaced, or new components added.

Multiple Everything
FlexiNet was designed to be component based, and to allow more than one instance of any
component to co-exist. This is important, for example if a client has to speak two versions of
a protocol. FlexiNet make very little use of ‘static’ data, as this is intrinsically restrictive.

ID: dl3.doc Follow Me Project

01.04.99 15 of 63 The FollowMe Team

Reflective Implementation
FlexiNet attempts to use its own mechanisms internally wherever possible. For example a
FlexiNet name, passed to identify an interface, is an ordinary object, and treated as such when
serialised, deserialised or otherwise manipulated. This approach allows us to change the
specification of one component (for example a name) with minimum impact on other
components.

2.2.4 Selective Transparency
Since FlexiNet remote method invocation has similar semantics to local method invocation,
we have access transparency at the lowest level. This uniformity helps keep application code
separated from ‘systems’ code, making it easier to move applications from one environment
to another. To take control, the application programmer can inject particular mechanisms,
both at runtime using an explicit binding facility and at design time by controlling the mixture
of protocols and transparency components used. Resources can be managed by restricting the
allocation policies for, and sizes of, resource pools assigned to selected components. This
capability is described as ‘selective transparency’, since the developer can choose how
strongly system components are tied to (and visible to) application components. Binding
decisions can be taken directly by system components or handed off to third parties where this
is appropriate. The former is appropriate for autonomous systems, the latter for managed
infrastructures (e.g., a trusted computing base).

The RM-ODP framework identifies nine distribution transparencies. Of these, only two,
Accessand Location relate directly to remote invocation. In addition to these, FlexiNet
protocols may provide varying degrees ofFailure, ReplicationandSecuritytransparency via
meta-objects in the protocol stack. The remaining RM-ODP transparencies, namely,
Migration, Relocation, Persistenceand Transaction,cannot be tackled in this way. Instead,
they require some notion ofencapsulation, whereby all interactions with an object, or group
of objects can be monitored and controlled. To achieve this FlexiNet implements the RM-
ODP notion of a cluster. A cluster is the primitive RM-ODP engineering unit of
encapsulation.

STUB

FlexiNet Communications Framework

Interface

Cluster

Object

Cluster
Location
Lookup

Cluster
Locking

Additional
Reflective Layers

Cluster

Fig. 2 Encapsulation Using FlexiNet

Clusters are illustrated in Fig. 2. All externally referenced interfaces in a cluster are accessed
via a FlexiNet protocol stack. We arrange that when a thread in one cluster invokes a method
in another cluster, we de-couple the threads so that the callee and caller cannot adversely

ID: dl3.doc Follow Me Project

01.04.99 16 of 63 The FollowMe Team

affect one another by blocking or thread termination. Additionally each cluster is effectively
given a separate Java security manager, and class loader. Thus each cluster becomes a ‘virtual
process’ that is de-coupled from all other clusters in terms of name spaces privileges, code
base and management. Clusters cannot examine the internals of each other, nor may arbitrary
methods on objects in one cluster be called from another without mediation by the reflective
layers in the protocol stack. These co-operate with a distinguished cluster management
interface associated with the cluster to provide whatever kind of distribution transparency is
appropriate. In the case of a mobile object the cluster manager arranges for the atomic transfer
of the cluster from one location to another, and the protocol stacks include some kind of
relocation function to track objects as they move.

2.2.5 Transactions
The FlexiNet transactional framework is designed to use the EJB container model, rather than
the cluster model. The motivation for this is primarily industry conformance. EJBs facilitate
the reuse of standard third party components; if our transactional framework were built on a
proprietary abstraction, then this advantage would be lost. Now that the EJB specification is
more mature, it would be an interesting exercise to construct an EJB compliant cluster.
However, if a bean were to take advantage of the less restricted environment that this would
afford, it would cease to be portable to other EJB implementations.

2.2.6 Mobile Objects
Mobile Objects are an abstraction designed to support code and data mobility. In particular,
they allows an executing application to ‘jump’ from one host to another. The mobile object
abstractions in FlexiNet are largely transparent, however there are some coding restrictions on
mobile objects, and it is not in general possible to migrate an arbitrary application.

Mobile Objects are supported in FlexiNet as a specialisation of the RM-ODPcluster
abstraction. A cluster is a collection of objects that are managed as a whole. Amobile cluster
is a collection of objects that may be migrated from one host to another. A cluster may be
thought of as a lightweight process and a mobile cluster as a process with the ability to jump
from host to host. In practice it is a process-like abstraction that we wish to be mobile, not
simply a single object.

ObjectCapsule

Mobile
Cluster

Creates in same
cluster

n Cluster
Contains

Contains
manages
lifecycle

1
1 n

'Normal' Method
Invocation

{same cluster}
Flexinet RMI

{different cluster}

Place
moves

between

Fig. 3 Clusters and Capsules

ID: dl3.doc Follow Me Project

01.04.99 17 of 63 The FollowMe Team

2.2.7 Persistent Objects and Places
Persistent Objects are a cluster-based abstraction that allows clients to access persistent
objects transparently. The persistent object itself implements one or more application specific
interfaces. The client is given a reference to these, and may access the object as if it were a
‘normal’ object. The infrastructure actually stores the object on disc, and transparently reads
the object in and writes it back before and after each method invocation.

Like mobile objects, persistent objects are supported by a specialisation of thecluster
abstraction. Persistent clusters are calledstorablesand are stored in Capsules calledStores.
This is analogous to the Mobile Cluster, Place relationship (Fig. 4).

ObjectCapsule

Storable

Creates in same
cluster

n Cluster
Contains

Contains
manages
lifecycle

1
1 n

'Normal' Method
Invocation

{same cluster}
Flexinet RMI

{different cluster}

Store exists in

Fig. 4 Storable Clusters

2.2.8 Performance
FlexiNet is a component based framework, and the protocols and abstractions that currently
populate this framework were designed for modularity and reuse, rather than performance.
For example, all the layers in a typical remote method invocation stack could be implemented
as one module, in order to increase performance.

However, FlexiNet is fully resource controlled, and uses pools for resources such as buffers
and threads, drawing on our earlier experience in C++ ORBs for real-time multi-media
applications. The modularity is an advantage here, as different pool management policies may
be ‘slotted in’ in order to trade off performance against resource usage.

Performance is notoriously difficult to measure. Many factors, such as a protocol’s support
for failure and simultaneous access, in addition to the actual reliability of the connection, and
number of simultaneous clients will all effect the achieved performance. However, to give a
simple indication of the ‘raw’ performance of FlexiNet compared to other protocols we ran a
series of simple tests between two machines. For these tests, four protocols were used; Sun’s
RMI, FlexiNet using a TCP based protocol (RRP), FlexiNet using a UDP based protocol
(REX) and a ‘raw’ TCP protocol. This latter protocol acts an indication of the inherent costs
of a remote call. It uses simple Java TCP sockets and has a single threaded client and server.
For all protocols, an array of bytes was used as the only argument to an invocation, and the
invocation returned a void result. The results of running the protocols with different JVMs
and different message sizes are shown in Fig. 5. For the record, the machines used were
Pentium Pro 200s, running NT Server 4 over a 10Mbit Ethernet. To reduce the effect of class
loading, compiling and TCP flow control, 100 invocations were made on each connection
prior to measuring the performance.

ID: dl3.doc Follow Me Project

01.04.99 18 of 63 The FollowMe Team

From the graphs the following points can be noted:

• The network time dominates the total time for all calls. None of the protocols is
appreciably slower than a raw socket connection.

• For large messages, the UDP protocol was slower, this is due to the need to perform UDP
fragmentation. This was particularly pronounced in the Microsoft JVM/JIT.

• The FlexiNet TCP protocol is around 15-20% slower than RMI on Sun’s JVM/JIT, but
around 10% faster on Microsoft’s JVM/JIT. This suggests that Sun’s RMI and JVM have
been optimised to run well with each other.

Comparative Performance (SUN JIT)

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64

Message Size (Kb)

T
im

e
P

er
C

al
l(

m
s)

RAW

RMI

RRP

REX

ID: dl3.doc Follow Me Project

01.04.99 19 of 63 The FollowMe Team

Comparative Performance (MS JIT)

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32 64

Message Size (Kb)

T
im

e
P

er
C

al
l(

m
s)

RAW

RMI

RRP

REX

Fig. 5 Comparative Protocol Performance

Unlike RMI, which relies on native methods and stub compilers in order to function, FlexiNet
remains 100% pure Java, with no external tools required. This makes it highly portable across
Java releases and JVM implementations. Future JIT or JVM performance increases should be
fully reflected in FlexiNet’s performance.

2.3 Agent Framework

The Agent Framework provides a set of programming interfaces and tools for service
providers and end-user programmers to construct distributed agent-based applications.

2.3.1 Autonomous Agents: personal assistants and task
agents

What is an autonomous agent? Unfortunately, you will find there are as many answers to this
question as there are computer scientists. It seems that computational agency is not a single
technology or pattern, however almost all definitions agree that an agent is something that
acts on behalf of a user to carry out some useful task with some varying degree of autonomy.
Instead of asking what an agent is, we can ask “how might we use them?”, and ultimately,
“what are their advantages?”.

One of the primary motivations for this work is mobility. Mobility of users, mobility of
programs, and mobility of data. With everything on the move, how do you tie everything
together? The user’s first-contact with the agent framework is the personal assistant, or PA. If
you are on the move, disconnected from the network, your PA will pick up your messages and
keep you informed. Your PA is the hub which all your remotely running agents keep in
contact with. Your PA keeps track of your information so that you or your agents can access

ID: dl3.doc Follow Me Project

01.04.99 20 of 63 The FollowMe Team

this data on demand. Your PA is the mission control which lets you create, monitor and
sometimes kill your own agents.

Of the software delivered as part of this core package, the PA is primarily a programmatic
object which can be customised to fit in with any particular application. However, for general
purpose use the PA may be viewed with a stand-alone user interface based on the latest Java
Swing technology. This interface offers you three views of the system.

• Location transparency for information objects is provided by the information spaces
work-package. The PA lets you browse your information space, so you may, for example,
access reports sent back to you by agents ‘in the field’. Your information space is also the
repository for your own personal profile and personal diary, your ‘filofax’ in the agent
world.

• You may access services and agents designed to use them through the Trader. The PA
lets you explore the available services and the contexts they reside in as though they were
directories on a normal file-system. New task agents may be launched, simply by double-
clicking on the required mission.

• The PA monitors any agents that you have previously launched, and presents this
information to the user as an activity list. Simple house-keeping is possible; you may kill
agents selectively, or you may even talk to running agents by clicking on their name,
which brings up their ‘contact’ window.

The definition of what an agent does is encapsulated within the idea of a ‘mission’. The
mission declares all the objects and classes required by the mission. The format for missions
is the eXtensible Markup Language, XML which has been adopted across FollowMe.
Looking somewhat like HTML, the mission contains a number of mission components, each
describing the content of a single object required by the mission. Some of these components
may be passive data objects, while others may define active behaviour.

Complex agents may be custom-built by a particular service provider to suit their own
services, in which case Java may be the most appropriate implementation language for these
active objects. However, part of the goal of the agent framework is to empower end-users to
write their own agents for their own purposes. Pre-packaged agents are good for the casual
user, but more experienced users will demand more flexibility. The aim was to provide a
simple programming interface that hides the underlying complexity, but none of the
functionality, of the underlying mobile object workbench. Our solution is to allow agents to
be programmed using the JavaScript language, which is accessible to a wide audience of end-
user programmers. JavaScript commands may be written directly into the mission, and with
no need to compile they may be run and tested instantly. This vision of agency makes the user
the main focus of the agent framework rather than the service provider.

The agent framework provides a range of software components which can be included as part
of a mission. The most important of these components are the XML support classes which
provide the script-writer with full access to any XML text, including the mission itself, as
though it were an object (a Document Object Model), and Document objects which may be
used to build simple user interfaces (such as the agent ‘contact screen’) which work with the
user-access work-package. With a powerful set of components, the agent programmer may
regard the JavaScript as little more than ‘component glue’. This DIY approach to agent
construction allows users to build agents as simply as a child might build a lego toy.

ID: dl3.doc Follow Me Project

01.04.99 21 of 63 The FollowMe Team

2.3.2 Personal Profiles: profile and diary objects
Many services we use require a core set of information, personal information about who we
are, where we live, and how we can be contacted. All too often we find ourselves entering the
same information over and over again. If only that information were stored in some common
and easily accessible place. In FollowMe, this personal data is stored in your personal profile
located in your private information space. Your profile must be private because it contains
sensitive personal information, only agents acting with your authority and with a reference to
your information space can access this data and supply it to services as required.

Because the information in the profile object is primarily for sharing, we use XML as a
platform independent means of sharing this structured data. Content markup languages like
XML allow us to describe the content of an object in terms of its significant conceptual
entities; which is distinct from the low-level, platform dependent object serializations used to
transport agents from place to place.

The domain models for personal profiles and the personal diary were based on the vCard
(used in Netscape Communicator) and vCalendar specifications, but are based on open
standards using the eXtensible Markup Language, XML. The translation into XML followed
the simple guideline that each element should be available in either unstructured human
readable, or structured machine readable formats, or both. The unstructured form of an
address could be printed directly on a label for example, whereas the structured machine
readable version would be broken down into separate address fields, making elements like the
post-code easy to extract and check.

The domain model for a personal profile contains the following elements:

• Identification properties (who am I?)

• Addressing properties (where do I live?)

• Communication properties (what’s my telephone number?)

• Organisational properties (what is my job?)

Whereas the personal profile is essentially a passive information object, the personal diary is
altogether different, able to raise events which rouse agents into action. The diary is
composed of the following time-based elements:

• Journal - a historical record of time-stamped occurrences.

• Alarms - a single or repeating occurrence that raises a diary event.

• Events - an occurrence of a finite duration that may be associated with an alarm.

• To-Do list - an action to be performed in the future.

The personal diary provides the mechanism by which a personal assistant may relay any
communications it receives, to a mobile user. If you know you will be driving on the
motorway at a certain time you may want to receive traffic reports from a traffic monitoring
service. Your agent is dispatched to the traffic service and you make a note of your portable
messager number as a diary event along with the times you may be on the road.

Separate diaries may also be carried around by individual agents. The problems with the
millenium bug pale into insignificance beside the problem of getting a mobile diary to work
reliably, moving between time zones onto computers with unsynchronised clocks, without

ID: dl3.doc Follow Me Project

01.04.99 22 of 63 The FollowMe Team

ever dropping a scheduled event. Many long-running agents do not need to be active all the
time. A diary alarm can be used to wake up the agent at the specified times.

The personal profile and diary together make up a kind of electronic ‘filofax’. Used in
conjunction with the personal assistant and task-agents, they enable many interesting
behaviours.

2.3.3 Service Interaction: trading & service profiles
Looking at the way agents work tells only half the story. In order for agents to be effective,
they must have some way to interact with their world, and they do this via services. The
service interaction work-package addresses the problems of identifying, designing and
implementing services in relation to the agent framework. The main aim is to provide the
basic mechanisms and tools needed by service providers and their clients, supporting the
creation of the pilot applications. A secondary aim of this work is to look at additional levels
of descriptive meta-data that can be represented at the service interface, and used by clients to
understand the service in more depth.

While the underlying mobile object workbench provides a basic naming service for
identifying well-known services essential to getting started, service interaction comes into its
own when we are able to locate services on a more generic basis. The role of a Trader is to act
as a broker for service providers and clients, and the point at which they meet is called the
service interface. An interface is an abstraction that describes what kind of service is provided
without prescribing exactly how it is done; the implementation. This flexibility allows any
number of service providers to ‘tender’ for the same job. The client is able to choose among
the service offers by comparing a number of public features, called properties. To ensure that
the client is comparing like with like, all offers for a given service are made within a so-called
context. It is this context that defines the properties these service offers should display, and is
thus distinct from the service itself.

The process of declaring new contexts and defining the properties of a given service offer are
simplified by the use of service profiles. The eXtensible Markup Language, XML, provides a
simple way to describe all this information to the Trader. The simplest use of the service
profile is to list all the contextual properties of that service as a sequence of XML elements.
While this information is fine for agents written by the service provider who has full access to
the design of the service itself, we want to encourage end-users to explore the full range of
available services and to build their own agents to suit their own needs. To enable this kind of
activity we need to make much more documentary information, or meta-data, available at the
Trader; in effect using it as an interface repository. This information will provide the raw
material for the creation of new clients against a service interface.

The main component of this additional meta-data defines the operations available at an
interface and the types of values passed between client and service; the service signature.
Service interfaces are commonly described using a standard Interface Definition Language
(IDL), which provides the benefit of implementation language neutrality. We make use of the
significant overlap between XML Document Type Definitions and the type structures
typically provided by an IDL to come up with a scheme that fits very naturally into the
scripted-XML level of the agent framework.

ID: dl3.doc Follow Me Project

01.04.99 23 of 63 The FollowMe Team

2.4 Service Deployment

In a global network environment such as the internet, it is difficult to anticipate the demands
on a particular service. Usage can often be extremely dynamic, with many unforeseen
fluctuations.

The objective of this work package was to exploit the knowledge of user profiles for
providing quality of service to users. In particular, we were interested in the design and
implementation of a load balancing strategy that relies on the grouping of users according to
the users’ profiles. A basic infrastructure to support load such balancing strategies was
implemented: Tools to monitor the performance of resources, such as CPU load, or network
throughput, and data mining facilities to identify groups of common patterns in user profiles.

This section gives an overview of the technical aspects of the Service Deployment work
package.

2.4.1 Monitoring Tools

Requests
monitoring

Uses Manages

Creates

Reflects

ProvidesCreates

Uses

n

n

n n

n
n

n

Application

Monitor

History

Resource Target

Measurement

Value

Monitoring Tools

Hardware Resource Application-specific resource

CPU Memory Disk Network Counter

Host

Fig. 6 Diagram of Classes

Fig. 6 presents a diagram of the classes used to support the software developed in the Service
Deployment work package.

Resourcescan either be mapped on real hardware resources such as the CPU, or be
application defined. The interfaceResourcedefined in this work package is defining a single
method that must be implemented by any implementation of that interface. This method
(Value getValue()) returns upon request the current usage of the resource that is defined. The
returned type might be arbitrarily complex.

The classTarget is used to define the entity that uses aResource. It can for example be a
Host, an object or a cluster as defined by APM. Once the pair (Resource, Target) defined, it is

ID: dl3.doc Follow Me Project

01.04.99 24 of 63 The FollowMe Team

possible to define the way resource usage must be observed. The classesBasicMeasurement
(and alsoMeasurement)andMonitor makes this possible. A Monitor observes (periodically,
aperiodically on-request or aperiodically on-threshold) the consumption of aResourceby a
Targetby requestingMeasurements. The classMeasurementencapsulatesResource, and may
apply to the value returned by theResourcecomplex post-processing. TheBasicMeasurement
class does not apply any processing to the value obtained from theResource.

Instances of the classHistory receive the values returned by (simple)BasicMeasurementor by
(more elaborated)Measurement. A History can be viewed as a buffer in which individual
measurements are appended, and on which some processing can further be applied. While
Measurementenables a first phase of consumption processing, this processing is applied on
individual values. The processing that may be applied onHistories concerns in contrast a
collection of individual values, thereby enabling the use of aggregate operators such as
Average. The post-processing that may be applied on values stored inHistories refers to the
ClassFilter. We have defined several built-inFilters like Interpolation, … The values are
accumulated inHistoriesby Monitors. There is typically a singleMonitor on each machine. A
Monitor manages all theHistories that are currently active in a machine.Monitors create
Historiesduring their initial interaction with the applications. Once created, theHistoriesare
kept up-to-dates by the relevantMonitor thanks to the parameters set at creation time (like the
observation frequency, …). Applications directly interact withHistoriesonce created.

There are two basic ways to useHistories of measurements. First, they may be used in
Request-based mode. In this case, an application gets values upon explicit requests. A typical
request needs the resource-name and a time-range as arguments, and may return for example
the average load that is placed on that resource during the specified period. Second, they may
be used in Notification-based mode. In this case, an application gets values when an
application-defined condition becomes true. To use a history in this mode, the application has
to specify the name of the resource, a time range, and a condition. For example, the
application can ask to be notified when the average load placed on that resource for the period
becomes greater than a specific threshold value.Filters andHistoriesboth provide a Request-
based mode. This mode is described in a common interface calledView.

2.4.2 Data-Mining
Our algorithm is based on associative data mining. Briefly stated associative data mining
computes a set of inference rules among items stored in a database of transactions of itemset.
An inference rule of the formI -> J means that most transactions containing the itemsetI also
contain the itemsetJ. In general, an inference rule is associated with itssupport, which gives
the number of transactions verifying the rule, and itsconfidence, which gives the probability
with which a transaction containingI will also containJ. A classical data-mining algorithm
first computes the sets of elements that are frequent within transactions. It then identifies
inference rules given the frequent sets computed first.

In our context, an item corresponds to a newspaper topic and a transaction corresponds to a
user profile. First, the algorithm computes page groups of increasing size, and each group
identifies a set of topics that are all accessed by a number of users exceeding the given
threshold. In order to get a hierarchy of groups, the algorithm's first phase structures
computed groups according to a tree structure. However, typical mining algorithms are not
suited for the dynamic computation of groups as for our case. Any modification within the set
of user profiles leads to re-compute the whole hierarchy.

Our algorithm extends a typical mining algorithm to exhibit a dynamic behaviour. We can
therefore dynamically build the group hierarchy using recursive procedures for the addition,

ID: dl3.doc Follow Me Project

01.04.99 25 of 63 The FollowMe Team

removal, and modification of a user profile. By construction, a tree node is necessarily a
frequent group whose level in the tree determines its size. Each node of the tree stores the
number of clients whose profile contains the topics of its associated group and an additional
topic (which has to be greater than all the topics of the group).

The performance evaluations presented in the Final Service Deployment Document show that
using together Mining and Clustering is a way for enforcing both timeliness and scalability.

2.5 User Access

The User Access provides facilities for mobile applications to exchange information with
their mobile users and vice versa. The User Access consists of a main component that
provides standard interfaces for FollowMe applications to interact with users, and a set of
device gateways that provide an adequate layout rendering of this information.

Main requirements were

• the support of interactive (i.e. input/output) and passive (output only) devices via
common interfaces,

• the provision of a generic mark-up language to describe the contents and the layout of the
rendered documents, and

• mechanisms to adapt the transmitted information and layout (i.e. the quality of service) to
the performance of the system and the selected end-user device.

The design is driven by a Document Delivery Pattern. I.e. an application hands over a
document to the user access for delivery. The document itself encapsulates the information,
but also a description how this information is rendered to a layout suitable for a certain
device.

The device gateway negotiates with the document for an appropriate layout rendering. A
document provides a set of external representations of its information. If these representations
are not suitable for the given device, the device gateway requests a standard representation of
the information in XML together with an accompanying style sheet in XSL, and renders both
to an adequate layout.

Currently device gateways for WWW-browsers, Fax, SMS, email and java-enabled devices
(based on swing) are implemented.

2.5.1 Requirements addressed by the User Access
Component

The User Access component provides facilities for interaction between the agent and the user
(see Fig. 7). There are two main classes of requirements that are addressed by the user access
component:

• Communication requirements: i.e. what devices have to be supported, what are the
facilities to exchange information between the user and the agent1?

1 Please note that in the following the concepts ofagent, personal assistant,and application could be used
synonymously. We will mainly use the term agent, in some cases personal assistant if we want to emphasise the

ID: dl3.doc Follow Me Project

01.04.99 26 of 63 The FollowMe Team

• Layout rendering requirements: i.e. what facilities are needed to present the information
on the selected device

User Access

Communication
(output only)

User's Phone / SMS

Fax 089/123456

User's Desktop

Communication
& Interaction

Place
Agent

Diary

Communication
(output only)

Fig. 7 The User Access Component as a mediator between agents and devices

2.5.1.1Communication Requirements
Users interact with their agents through a variety of different media. A set of devices
servicing these media types is supported. In the following we distinguish between passive (i.e.
output only) and interactive (i.e. input/output devices). The following devices should be
supported

• Interactive Devices

• web-browsers

• Java enabled devices that support graphical output

• Passive Devices

• fax-machines

• audio output via phone

• SMS (short message systems)

• email

Additional device (types) should be pluggable into the system without the need to modify the
existing agent’s capabilities.

Initiation of a communication can either be triggered by an agent in order to contact its user,
or vice versa.

When the user wants to contact its agent, he accesses it through an entry point provided by the
user access component. The contact can e.g. be established from the user’s browser. The
browser contacts a server that acts as an entry point. An entry point provides two
functionalities: It contacts an agent factory to create a new agent that gets in touch with its
user, or it can lookup through a predefined agent directory an existing agent. In the latter case
the entry point informs the agent to get in touch with its user.

personalised nature of the agent. There is no difference from the usage point of view whether the user access
service is used by a (mobile) agent, or any other FlexiNet-based application.

ID: dl3.doc Follow Me Project

01.04.99 27 of 63 The FollowMe Team

The agent maintains connectivity information in the user’s profile. When the agents wants to
deliver information to its user, it has to lookup current connectivity information in the user’s
profile. This can be the user’s business fax, or home fax, or the user’s SMS gateway. The
agent requests from the user access component to open a connection to this device. With this
connection opened it can send to (and potentially interact with) the user.

2.5.1.2Layout Rendering Requirements
The agent may wish to send the same information to the user through different devices and
media types. Thus information can have different external representations, depending on the
type of device. For example if an agent wants to deliver the information that a share’s stock
value has exceeded some set limit, this can be rendered in various ways to the user:

• On a web browser as a web-page with sophisticated graphical layout elements

• As an email that containing a text note

• As a voice message via phone: “Some shares in your portfolio have exceed a limit, please
contact your agent”.

The knowledge of the agent about the specific characteristics of a device should be as small as
possible. Thus the User Access has to provide a unique interface for different device/media
types, and to bundle devices with similar layout capabilities into a device type.

To achieve this, information and layout must be separated: The information transferred is the
same for all devices. The layout maps this information to an appropriate output format (see
Fig. 8).

Place Agent

Infor-
mation

Layout1

Layout2

Layout3

+

+

+

User's Phone / SMS

Fax 089/123456

User's Desktop
Layout Description

Fig. 8 Separation of information and layout description

The rendering into an appropriate external representation and the transmission is handled by a
device gateway. A device gateway provides connections to a set of similar devices (e.g. a
SMS device gateway, a fax device gateway, or an http device gateway). Each of these device
gateways provides a certain set of capabilities.

The user access must provide mechanisms to adapt the layout description to different
constraints as e.g. size of an output screen or black & white vs. colour output. The rendering
of a layout can be quite resource consuming. Thus the transmission process must be separated
into its two basic functionalities (see Fig. 9):

• rendering a layout byconverting it into an appropriate representation suitable for that
device, and

• transmittingthe external representation to the end-user device.

ID: dl3.doc Follow Me Project

01.04.99 28 of 63 The FollowMe Team

TransmissionConversion

Infor-
mation

Layout1

Agent

End-user
device

External
Repre-

sentation

Fig. 9 Conversion and transmission of information

2.5.2 Design of the User Access
In the following, we describe the overall design patterns of the user access, its principles and
the objects that define the service’s architecture and its functionality. The interaction between
User Access service and other FollowMe objects is explained in interaction diagrams.

2.5.2.1Architecture of User Access

Overview

A host, participating in a FollowMe application, can offer a set of localdevicesthat support
communication with the end user. Examples of such devices are fax cards, voice modems, a
web-server capable to display HTML on web browsers, or an applet that acts as an
(sophisticated) input/output device. Thesedevicestypically establish aconnectionto the
user’s end device. The characteristics of these connections will vary depending of the device
type and the specification of the agent.

Place

Agent

Connection

end user
device

User Access service

Device Gateway

manages

local device

1: OpenConnection

Document

Navigation

2: Send(Document)

External
Representation

Fig. 10 Basic communication schema between agent and end user

Regarding this model, the main task of the UA component is to manage connections between
agents and end-user devices. This includes the opening of a suitable connection, the transfer
of documents, the support of navigation inside documents and the closing down of a
connection. Both agents and users are able to close the connection and interrupt the
communication between them at any point in time.

ID: dl3.doc Follow Me Project

01.04.99 29 of 63 The FollowMe Team

User Access

Device
GatewayEntryPoint

manages

Is_a

Connection

opens

Device-
Capabilities

captures

Simple-
Converter

uses

1

1

1

n

1

n

Fig. 11 Main User Access objects

TheUser Accessis a service that manages the local devices (fax card, modem, email-service,
etc,) available at a host. Each device has aDevice gateway2 associated. The user access
service can also relay to device gateways maintained by other user access services.

Device Gateways provide facilities to open connections between the local device and the end-
user devices. They hold a description of the capabilities of the device, and provide a converter
from the XML format to the external representation required by the device. An Entry Point is
a special device gateway installed at known locations that allow the user to request a
connection to an agent.

A connectionis a (temporary) channel to transport a set of (potentially complex) documents
to the end-user’s device. The transport can include conversion into appropriate external
representations and transmission of referred documents (e.g. images). Also connections
handle navigation through references to other documents and user responses.

There are two ways for an agent to obtain a connection. Either the agent contacts a UA
service and asks it for a connection (e.g. via a fax device) to use. Or it gets a contactUser
message from an entry point that contains the connection as an argument.

The connection properties, i.e. capabilities of the device, or the number of a telephone, are
specified by the connectivity description that is found in the personal profile or constructed by
the agent. The user access service looks for a device gateway that can support the
requirements given in the connectivity description. This can be either a local device gateway
or also a remote device gateway which is completely transparent for the Agent. The agent can
then send documents through the connection object.

The information is encapsulated in documents. Information can have different external
representations. A standard external representation supported by all device gateways is XML
(see section “Document Model” below). Together with an associated layout description in
XSL these representations can be translated into appropriate external representations
supported by that device, as e.g. HTML, plain text.

A hook to support the Quality of Service (QoS) is provided in order to adapt the use of
resources and network traffic to the performance of the system, the network, and the
capabilities of the device. Via the QoS the layout of the rendered documents can be
influenced. Thus the user may e.g. receive black and white data instead of coloured images

2 Device gateways can be compared to device drivers in standard operating systems

ID: dl3.doc Follow Me Project

01.04.99 30 of 63 The FollowMe Team

depending on the agent/applications preferences, i.e. the agent can decide if it is preferable
that the user receives a coloured image at a very low speed or if it is better to send the user
just black and white pictures.

Document Model

Documents have to support three types of functionalities:

• Documents represent information sent from an agent to the end-user: The information can
have quite a complex structure due to its multi-medial nature. It can contain text, pictures,
audio, etc. Thus documents may refer to other documents, containing individual pieces of
the information. Each document can be rendered in different external representations
which are described as MIME-types (see Fig. 12).

Document
External

Representationprovides MIME-typeIs_of

references

Fig. 12 Documents

• Documents give access to layout descriptions. Documents provide e.g. XSL documents
describing the layout of the information. The user access uses this description to render
the information into the appropriate layout.

• Documents handle user feed-back, i.e. they manage the reaction of a user on this
document. A user can trigger feedback by two types of actions: Following links to
referenced documents, and by returning a set of input parameters requested (e.g. in an
HTML-form).

A document gives access to different external representations (see Fig. 13). These
representations can be already precompiled, or constructed on the fly. Device Gateways
provide converters3 that convert from an external representations to another external
representation, suitable for this device gateway. If a document is not able to provide the
appropriate external representation for a device, the XML representation is used to derive the
appropriate external representation. These external representations are described by mime
types (e.g. text/xml, text/html, image/gif). The relevant method is

public ExternalRepresentation getExternalRepresentation(MimeType mimetype)

A document can refer to other documents by an (internal) name. I.e. a document can be
queried to give access to another document via the method

public Document getReferredDocument(String name, Properties params)

The name can refer to the result of the filling of a form by the user. In this case params is a list
of extra parameters values given by the user. Thus a document can provide its own handling
facilities for user feedback.

3 Converters implement the interface SimpleConverter. In future releases more complex converters may be
defined.

ID: dl3.doc Follow Me Project

01.04.99 31 of 63 The FollowMe Team

Document

Ext.
Repr1

Ext.
Repr2

Ext.
Repr3

Fig. 13 Structure of Documents

Document is an interface, the implementation behind this interface is application depend.
Thus documents can build quite a complex structure, e.g. contain subdocuments, refer to other
documents.

Fig. 14 depicts the example of an issue of a newspaper. This issue is described as a document,
which has two external representations in XML and HTML. These representations refer to
articles as subdocuments4 which in turn refer to documents that contain photos. These photos
are represented in GIF-format.

NewsPaper
Main Page

Article 2

Article 1

HTML representation

XML representation

Photo

GIF repr.

Article 1

Artic
le

1

Article 2Article 2

House

Document

Document

Document

Document

Fig. 14 Example of a network of documents

Interaction between Connection and Agent

The interaction between agents and connections falls into three phases:

• Obtaining a connection through an open request to the user access or a device gateway ,
or through the “contactUser”-message emitted by an entry point.

• Sending of documents, navigation through documents

4 Whether these documents are subdocuments or separated documents is just a conceptual view. From the user
access point of view they can be independent documents.

ID: dl3.doc Follow Me Project

01.04.99 32 of 63 The FollowMe Team

• Closing a connection

There are two ways to obtain a connection:

• The agent actively requests from a user access service the opening of a connection with
theopenConnection(ConnectivityDescription ConDes) method. Argument to this method
is the ConnectivityDescription which describes how the user can be reached, i.e. the
device type to be used, and the number. (Fig. 15)

• The user contacts an EntryPoint. The entry points are located at well known hosts for
each device type through which the user can contact FollowMe, e.g. an http-address if the
contact is through a browser. This EntryPoint interface is in charge of opening a
Connection and it calls the methodpublic contactUser(Connection C) in the interface
of the agent. contactUser carries as a parameter the connection via which the user is
online. The agent can then use this connection to interact with the user. (Fig. 16)

Closing

Navigation

Opening

Agent User Access

Device
Gateway

Document d1
Document d2

openConnection
openConnection

create

c.send(d1)

d1.getExternalRepresentation()
d1.getReferredDocument()

d2.getExternalRepresentation()

c

d2

closed(c)

Connection c

Fig. 15 Interaction diagram: agent actively opens a connection

The agent uses the send method of the connection to ask for the transmission of a
document. The transmission can involve the access to referenced documents. However the
agent is not directly involved in the transmission of these documents, because the documents
themselves handle the access. The effect of multiple sends is device dependent. On screen
oriented devices (e.g. http-devices, awt-devices) it will in open another window for each
document. On text oriented devices (e.g. mail, fax) it will result in a concatenation of the
documents.

The sending involves both the transformation into the correct layout and the physical
transmission to the user’s end-device. These two steps can be taken apart by using a
SimpleConverter to render the external representation and using the methodpublic abstract

void sendraw(ExternalRepresentation er) to physically transmit the external representation.

A connection can be closed by the agent with the close-method. Whether this immediately
closes the connection or whether the physical transmission of documents is still ongoing, is
device dependent.

ID: dl3.doc Follow Me Project

01.04.99 33 of 63 The FollowMe Team

In order to intercept the closing of a connection by the user, or by enforcement of the user
access, an agent can install aConnectionListener . This listener can receive two types of
events: Failure of transmission and closing of the connection.

Navigation

Opening

Agent a

User’s
Browser

EntryPointDocument d1
Document d2

contactUser(c)

SearchAgent(“a”)

create

c.send(d1)

Connection c

...

document
document

Fig. 16 Interaction diagram: A user requests an Entry Point to search and to contact agent
“a”

Generic Mark Up Language XML/XSL

The main motivation to use a mark up language to represent data and layout was born from
the requirement to have a general, common way to represent data and layout that has to be
delivered to different users and devices with different capabilities like audio, html/text, etc.

Why a mark up language to solve this problem?

Some uniform way to represent structured data was needed, some way to write documents in
a form that allows to describe their own grammar, i.e. describe elements and the structural
relationships that those elements represent. We need extensibility, allowing agents to create
their own elements representing data, managing of structured data with a high level of nested
complexity, some common way to describe different views of the same data. XML emerged
as a standard which provides such features. In parallel, XSL (“extended style language”)
emerged as the complement of XML to be used to describe in a so-called style sheet the
layout of the XML data.

Both XML and XSL are W3C recommendations or W3C working draft. The language
definition is not reproduced here, but can be found at [3], [2] and [1].

Use of XML/XSL by agents/applications

The document model described in 0. is capable to transmit any type of information to the end
user device, provided the device gateway supports this type of information (i.e. the respective
Mime-type).

The XML document can hold arbitrarily structured (textual) information. The layout of the
information is defined in an XSL style sheet. XSL supports different modes. These modes are
basically used to discriminate between different layout descriptions:

“ ”(default): for devices which can understand full HTML, e.g. Browsers

“text”: for devices which can understand only text, e.g. some fax devices, e-mail

“staticHtml” for devices that support rendering of HTML-structured text and graphics
like a fax

“shortText”: for SMS and similar devices with limited text capabilities

ID: dl3.doc Follow Me Project

01.04.99 34 of 63 The FollowMe Team

“audio” : for devices which can only work with sound, like a standard phone

Via the mode-method of the QualityOfService-Interface the agent can provide an alternative
mode in which the layout should be rendered. This could e.g. allow for the replacement of
coloured images by textual descriptions, if the network bandwidth is low.

The connection transparently applies converters that combine the XML document and the
XSL description and produces a format suitable for the end device (e.g. HTML, RTF, plain
text, etc.).

If the device type is already known, the XSL style sheet can already be tailor-made for this
device type. Otherwise the XSL style sheet defines a set of different layouts for all devices to
which a certain piece of data may be transmitted. The different layouts are defined in different
modes of the XSL layout rules.

The corresponding XSL-file is referenced in the XML-file by the <?xml-stylesheet
href="..."?> tag. If no tag is given, the name “index.xsl” is assumed. After parsing the XML-
file the XSL-file is requested from the document (via the referredDocument-method), and
both applied to convert to the appropriate layout.

2.6 The Bavaria-Online Pilots

Customer demands nowadays move away from providing a plain web presence towards
providing web-based value added information services. Thus the core objective within work
package I was to evaluate whether the FollowMe architectural framework provides a suitable
basis for straight forward development of web-based, user customisable information
management services.

A first important result of the project had therefore been the design of the work package I
application framework. The framework had been designed in close co-operation with project
partners involved with FollowMe’s technical work packages, especially with agent framework
(section 2.3). Thus the application level architecture is also reflected in the concepts of the
agent framework.

Based on the application framework two such information services have been implemented
and deployed for field tests within the Bavaria Online citizens network. Feedback from pilot
users and results from usage monitoring were evaluated to measure the degree of user
acceptance of new services.

Application framework:
The main concept behind the application framework was derived from the following general
issues related to information management infrastructures:

• The use of any database is not only defined by the sheer amount of collected data, but by
the applications or services that operate on the contents of the database to provide
information in form of customised results to the users of such systems.

• In order to enable the development of useful database applications, any database needs to
provide a meta-model describing the structure of the offered data.

• To gain the most from largely distributed databases, the development of database
applications should be de-coupled from the maintenance of the databases themselves.

ID: dl3.doc Follow Me Project

01.04.99 35 of 63 The FollowMe Team

That way, the contents of data sources can be re-used and re-combined when developing
new applications according to the needs of information consumers.

An analysis of above issues led to the most important design decision for the WP I pilot
application framework:to de-couple the roles of service providers and content providers.
Service providers implement applications that make use of raw data offered by content
providers. They define meta-models describing the data structures their applications are
capable of dealing with. In order to enable the service providers’ applications to make use of
the data offered by a content provider, the data needs to be structured according to meta-
models that form supersets of the meta- models of the service providers. This decision led
straightforward to the following core axioms:

• Users of our applications will no longer (as is with the Web) address content providers to
obtain information in raw or proprietary data format. Instead they will address services
that provide them with already refined information according to their individual needs.
The services therefore need to be customisable by the individual user.

• Services do not operate on a predefined or hard-coded set of data sources, but on specific
data structures. They may use any data source available at runtime that offers relevant
data as long as it offers an interface the service knows how to use.

These axioms imposed the introduction of components ‘that glue things together’. On the one
hand, users need to have an effective way of locating services that fit their needs. On the other
hand, there need to exist mechanisms that enable services to locate relevant information
sources at runtime. The appropriate concepts to fulfil these requirements are the ideas of
brokers, matchmakers or – more simply – directory services.

Thus the core components of the application framework had been identified as (see Fig. 17):

• content providers(offering access to data-objects),

• service providers(providing services operating on data available from thecontent
providers),

• information consumers(users of available services) and

• directory services(mediating between the other components).

Service
Directory

Service
Provider

Service
Provider

Users

Information
Directory

Information
Directory

Content
Provider

Content
Provider

Content
Provider

Content
Provider

Information

Fig. 17 Core components of the application framework

The overall FollowMe architectural framework (see 0) provides agent, scripting, profiling and
service trader concepts to build up an agent interaction framework that enables the
deployment of agent driven applications meeting the above stated needs.

ID: dl3.doc Follow Me Project

01.04.99 36 of 63 The FollowMe Team

In terms of the FollowMeAgent Framework(see 2.3) a service is composed of a component
related to the information consumer (referred to astask agent) and a component implementing
an interface to content providers (referred to asservice interaction interface). A special user
related agent (referred to aspersonal assistant) assists the user in organising the usage of
services and handling personalised information.

In most client/server or network centric applications currently available on the Internet users
connect to remote applications and specify their interests in form of application specific
parameters. All computation is done on the server side and results are delivered to the clients.
This enables application providers to gather and data-mine lots of personalised information
about users of their system. In contrast, within the agent based approach of this application
framework, the user’s privacy is respected by hosting all user related information and
computation in a location close to the user and in an environment trusted by the user (see
concepts ofprofilesandinformation spacesin the FollowMe architecture documentation [4]).
All agents acting on behalf of a user are instantiated on request by downloading the respective
Java classes from so calledagent factoriesto a user trusted environment (referred to as
FollowMe places). This environment is located on a host with permanent online connection
(i.e. a local ISP).

Another value-added feature of information services based on this application framework is
the possibility to interact with the user via a variety of different device types thus enhancing
user mobility. This feature builds on components developed in the User Access work package
(see 2.5).

The components of the application framework are linked together as described in Fig. 18.

user
interaction

lookup
services

User Access
Personal
Assistant

Service Provider
Directory

Task AgentInformation Space

lookup content
providers

Content Provider
Directory

Service Interface

user interaction

sto
re

data

store data

retrieve
inform

ation

coordinate
actions

Fig. 18 System components of the application framework

Personal Assistant:

A personal assistant(PA) represents a single user of the FollowMe system. The role of the
PA is to assist the user in organising the usage of services. Attached to thePA is the user’s
personal profile. This profile is used to store persistent data about the user. Basically user
related data consists of the user’s name and address, the user’s system access password and a
list of the services the user is currently subscribed to. Since all persistent data is stored in
XML (see architecture framework), profiles can be easily extended according to the needs of
the evolving system.

ID: dl3.doc Follow Me Project

01.04.99 37 of 63 The FollowMe Team

Besides basic persistent data about the user, thepersonal profileprovides adiary functionality
that enables the user to specify how the system may contact him at different points in time
(see description of theuser access component).

Agents act on behalf of the user while the user is offline. The system therefore provides
mechanisms that enable the scheduling of task execution and reporting. This mechanism is
provided by atimer component as part of thepersonal profile.

New users might join the system by requesting the instantiation of a newpersonal assistant.
A new PA is created by instantiating the respective Java classes from a (remote)personal
assistant factory.

To allow users to address theirPA by thePa’s name (i.e.MyAgent Aladdin), there exists aPA
directorymappingPA names to object references.

Task Agent:

Task agentsare agents offering application domain specific functionality. They are capable of
using services with domain specific interfaces. The tasks of an agent can be described in
terms ofmissionsprogrammed in the scripting language of the FollowMeAgent Framework
(see WP D, E and F) or coded in Java classes.Task agentscan communicate with the
personal assistantusing the message passing protocols provided by the underlyingmobile
object workbench(see architecture framework).

Interfaces to content provider services (data-sources) are registered with a content provider
directory service. The directory service may hold meta-data for each service. Based on this
meta-data a task agent can optimise the selection of content providers. In example, these
interface descriptions may provide information on update schedules of thecontent providers’
databases (i.e. it doesn’t make sense for an agent to query acontent providerfor new
information every five minutes when the data sources are updated only once a day).

Attached to atask agentis a task agent profile. The profile contains user specified task
parameters and scheduling information defining when to execute which tasks.

Task agentsare created by downloading mission profiles and instantiating the respective Java
classes from a (remote)task agent factorylocated at aservice providersite.

Component Interaction:

As outlined in Fig. 18, the user communicates with agents via theuser accessthrough a
variety of different device types. User interaction is required to provide the agent system with
personalised instructions on how and when to execute certain tasks on behalf of the user.

Both agent types,personal assistantsand task agents, may store the results of their
information retrieval activities (that is data objects retrieved fromcontent providersites) in a
user’s information space. Access to stored objects is via location transparent object
references. Theinformation spaceprovides access control mechanisms to ensure that data can
be accessed only by authorised agents.

The activities of a user’stask agentsare co-ordinated by thepersonal assistant. ThePA keeps
a record of all activetask agents. Tasks are triggered by thetimer component in thediary.

Personal assistantslink their users to the directory of available services whereastask agents
contactcontent provider directoriesto determine which data sources (in form ofservice
interfaces) to use. This again demonstrates the concept of separatingservice providersfrom
content providersand thus freeing the user from having to deal with widely distributed raw
data.

ID: dl3.doc Follow Me Project

01.04.99 38 of 63 The FollowMe Team

Pilot applications:
Based on above application framework two information services were implemented within
work package I. After interviewing Bavaria Online users and operators about their
information needs, two major characteristics of potential knowledge domains could be
identified:

• Domains dealing with information with high regional focus: Regional social events,
marketplaces for purchasing used items (e.g. cars, furniture, sports equipment,...), real
estate business.

• Domains dealing with highly dynamic information with strong user interest for up-to-date
information: Financial information services, daily news, weather information services.

Based on these characteristics we decided to build a service providing information on regional
social events and a service providing share value information.

Domain of regional social events

The content providers in this domain offer information on social events with regional focus.
Events advertised by the content providers might be for example local cinema programs,
concerts, theatre performances, flee markets, etc. This specific domain is of interest to a
majority of the Bavaria Online users and demonstrates the value-added features of our
information retrieval and delivery architecture due to the following core characteristics:

• The information has high regional focus.

• The contents are provided by the Bavaria Online nodes themselves (thus getting access to
the data is not a problem at all).

• Any application in this domain requires components the allow personalisation by the
user.

• Automated and scheduled reporting is of great value (e.g. users once state their interest in
upcoming Mozart concerts, forget about it and will be automatically informed whenever
such an event is advertised).

Domain of stock share value information

Information in this domain is on constantly updated share values for stocks traded at major
European and US stock exchanges. Again we summarise the core characteristics of this
specific domain related to the objectives of WP I:

• The information offered is highly dynamic (constantly changing share values).

• Personalisation is required for maintaining individual portfolios.

• Automated, instant reporting is of great value (e.g. sending a SMS message to a mobile
phone whenever a share value crosses a user specified limit).

• Publicly accessible content providers can be queried for the required information.

Service deployment and evaluation:
The two services were deployed in a distributed environment on hosts located at FAST and
five different Bavaria Online nodes. Usage of the service by Bavaria Online users has been
(and still is) continuously monitored. One month after initial deployment users were asked to
provide feedback on their experiences with the new services via a web-based questionnaire.

ID: dl3.doc Follow Me Project

01.04.99 39 of 63 The FollowMe Team

The most important results of the evaluation of both the usage monitoring and the user
feedback can summarised as follows:

• After 6 weeks of operation a total of 60 users registered with the new services. 27 % of
these users contacted the system more than once in order to re-configure previously
defined tasks or to schedule additional tasks.

• The 60 agents did send out 382 scheduled reports to their users. 98 % of these were sent
via e-mail and only 2 % via fax devices. This result is not surprising since the first users
of the services are presumably those Bavaria Online users that are the most advanced in
using the internet and electronic communication. Fax delivery is likely to be more
interesting for users that do not frequently connect to the internet or within application
domains were instant notification (even when the user is not online and thus not able to
get notified of incoming e-mails) is more relevant.

• 22 users filled out the web-based questionnaire. They in general appreciated the value-
added features of the new services (e.g. automated information retrieval, scheduled report
delivery and personalisation).

• When asked for recommendations for enhancements the most common request was to
improve user interfaces to enhance user-friendliness and to work on extending the
amount of data available from content provider sites.

• Most users explicitly stated that they want their node operators to continue to work on
enhancing and extending the offered services and made reasonable recommendation for
the development of similar services in additional knowledge domains.

Future plans:
As a consequence of the positive feedback from the first pilot users, the community of
Bavaria Online node operators decided to continue maintenance and further development of
the two implemented services and to investigate in strategies for development of additional
services. FAST will therefore continue hosting service components at least until end of 1999
and will offer assistance in further development of services based on work package I’s
application framework.

2.7 The ETEL++ Pilot Application

This section gives an overview of some technical aspects of the second pilot application
developed by INRIA and TCM, namely ETEL++. It briefly presents the main needs and
presents the main connection this application has with other work-packages.

2.7.1 The Need for an XML Parser
All partners took the decision to use XML as the common language for modelling and
encoding data that could cross the boundaries of software packages. From ETEL++’s point of
view, the data consists of the editorial material provided by Ouest-France, that is, articles. The
articles that are needed to build personalised editions are extracted from the real database at
Ouest-France, converted to XML and stored in one Information Space. After this conversion,
articles are analysed and meta-data resulting from the analysis is attached to articles. That
meta-data reflects somehow the semantic contents of each article, that is, it consists of

ID: dl3.doc Follow Me Project

01.04.99 40 of 63 The FollowMe Team

thematic and geographical keywords reflecting the subjects and the areas mentioned by the
body of the article.

We therefore needed to parse XML articles in order to built such meta-data. After several
trials, we decided to use the freeware XML parser created by Norbert H. Mikula. We also
defined a specific grammar describing the possible contents of XML articles. This grammar is
used by the parser to isolate specific XML tags, and to extract the associated data.

2.7.2 The Need for Persistency and Distribution
ETEL++ is a distributed application. Its architecture consists of multiple servers
interconnected by Internet, each having a local persistent storage space. The role of servers
has been uniformised, that is, no server has any privileged role, and any processing task can
be executed on any server. A major design concern was to abstract all the difficult issues
regarding distribution. We therefore extensively used all the distribution facilities provided by
APM. In addition, every single document managed by ETEL++ is made persistent, and may
be copied to and from any server. We both use white box and black box objects, which appear
to be very convenient abstractions for facilitating the use of persistency. All objects become
persistent transparently, and the code for dealing with persistency issues is well localised,
small, simple and efficient.

2.7.3 The Need for Performance Sensitive Data-Flows
A major concern of ETEL++ was to enforce Quality of Service. This can be translated in an
attempt to minimise when possible the response times needed to build personalised editions.
This is particularly crucial when utilising Internet in which large performance fluctuations
may be experienced in an apparently random manner.

ETEL++ dynamically checks for the performance of all the servers involved in its distributed
architecture, and decided upon the route articles will follow to produce the editions in an
efficient way. The performance of servers is obtained by the means of the Service
Deployment work package. Given the CPU and the network load of each server, each server
is asked to perform a particular task, to possibly generate editions of the behalf of heavily
loaded servers, or to propagate specific data to other servers.

If a CPU load factor is above a given threshold, then the corresponding machine is said to be
CPU bounded. In this case, ETEL++ considers this machine has not enough CPU power to
transform articles into the final representations required for user delivery. The same also
applies for the network. If the available bandwidth between two machines is scarce, then it is
undesirable to transfer between them a large volume of data. In this case, ETEL++ considers
the machine at the end of the link to be network bounded. A machine can be solely CPU-
bounded, solely network-bounded or both. In the first case, this machine will not transform
documents from one media to the other, but will rather try to obtain a copy of the relevant
documents after having asked another non-CPU-bounded machine to do the transformations
on its behalf. In the second case, a network-bounded machine will rather get a copy of some
documents, and subsequently generate all the transformed versions to match user’s
expectations. ETEL++ assimilates the case of a machine that is both CPU- and network-
bounded to the case of machines that are solely CPU-bounded. It is also possible that a
machine is not bounded at all. In this case, ETEL++ sends active documents, since this tends
to minimise bandwidth consumption. Before initiating the computation of the data flow map,
all servers can therefore be classified in NO-BOUNDED, CPU-BOUNDED or NETWORK-
BOUNDED. This classification enables the computation of a performance sensitive data-flow

ID: dl3.doc Follow Me Project

01.04.99 41 of 63 The FollowMe Team

map in which each server is assigned a specific role, and in which the “journey” of each
article is decided.

2.7.4 The Need for Agents
Agents and the Interaction of Services provided by UWE are of a great interest for ETEL++.
Agents are utilised to obtain context-sensitive data. In particular, we use Agents to obtain the
weather forecast that corresponds to the area of connection of a user. When that location of
the connection changes, the content of the weather forecast is changed as well. Agents are
useful in this case because they remove the complex burden of managing geographical
information, and of discovering an external forecast server that is adequate. In addition, the
use of Missions as defined by UWE makes possible to encode in a simple way the reactions to
enforce when a discovered server is unavailable for example.

2.7.5 The Need for User-Access
The User-Access work package provided convenient ways to facilitate the production of
multi-terminal editions. ETEL++ designed its hierarchy of objects in accordance to the design
of User-Access, that is, specific objects implement the interfaces that offer means for coping
with multiple devices.

2.7.6 Internal Data Structures
ETEL++ needs several data structures to make possible the construction of personalised
editions. First, it needs multiple inverted lists that associate document references to keywords.
These inverted lists enable to know what documents contains a certain keyword (thematic,
geographic). All the documents are indexed by one or more inverted list.

ETEL++ needs also data structures to manage the profiles of its readers (in this case, users). A
user profile contains key information about the identity of a user. It contains also data that
describe in which ways the edition for a user has to be personalised. For example, a profile
contains a set of keywords that describe the centre of interests of a user.

Another major data structure needed by ETEL++ is the one that keeps workload information
for the performance sensitive routing of data flows.

2.8 Conclusions

The FollowMe framework was designed as a toolkit of components. Different applications
may use different parts and configurations of the individual components. The common
architecture guarantees the inter-working of the individual components.

With the two demonstrators the FollowMe Framework has proven to be usable for building up
highly sophisticated and personalised applications.

ID: dl3.doc Follow Me Project

01.04.99 42 of 63 The FollowMe Team

3 Project Execution

This chapter presents for all work packages the major development steps and design decisions
during the evolution of the project.

The project has adopted a model of gradual extensions to produce the results of each work
package. This proved to be successful, also because it enabled the work packages to
incorporate change requests from other partners. Thus a common coherent architecture could
be developed.

A series of project team meetings and individual meetings where planned, in order to foster
the internal communication structure. Especially in the early project phases a series of
meetings took place to discuss and elaborate the mutual requirements of each work package.

All work packages delivered the planned results. The project was originally planned for 24
months and cut down to 18 month on recommendation of the EC-reviewers of the proposal.
Unfortunately this cut mainly got onto account of the pilot applications which were able to
develop the demonstrators, however the field evaluations must continue further to give more
significant feed back..

3.1 WP A, B, and C : Architecture, Mobile Object
Workbench, Information Space

The purpose of the Architecture work-package in the FollowMe project (WP-A) was two-
fold:

• at the outset of the project to scope the division of work between partners into basic
components with well defined interfaces and relationships; in this respect the architecture
description is a reflection of the planning work done by the partners during the project
proposal stage, and during the first phase of design

• as the project progressed, the architecture description was updated and refined in the light
of ongoing design reviews to become a repository of design expertise assembled by the
project, which we felt would be of value of others following in our steps. In doing so we
looked for the re-usable elements of our overall system design.

The FollowMe project took as its foundations the ISO/ITU Reference Model for Open
Distributed Processing – RM-ODP -(ISO/IEC 10746 parts 1-3, ITU Recs. X.900-903) and the
Object Management Group’s CORBA suite of standards.

The motivation for using RM-ODP was to provide architectural foundations for the project.
This was successful in two ways. First the RM-ODP engineering model provided a template
for clusters in Tasks B and C (Mobile Object Workbench / Information Space). Second in
documenting the architecture, RM-ODP provided a vocabulary and structure for separating

ID: dl3.doc Follow Me Project

01.04.99 43 of 63 The FollowMe Team

concerns that proved useful to some extent. Most of the architectural patterns turned out to fit
the RM-ODP computational model, which was sufficient for meeting the descriptive need, but
gave no guidance in the identification and structuring of patterns. This information came
from project design work.

The motivation for using CORBA was to inter-work with the dominant industry standard for
distributed computing. FollowMe augments the ODP / CORBA of distributed computing
with two powerful new paradigms for information systems. The first is object mobility.
Object mobility allows programmers to produce systems in which objects with state can move
around a computer network. The second paradigm is agency. Agency means that programs act
autonomously on behalf of users and so may make decisions when the user is not connected.
Indeed one major decision that often needs to be made is how to connect to the user at a
specific time to deliver a specific piece of information.

While the project followed the ODP and CORBA architecture, the choice of Java as
implementation language enabled a simpler API and more powerful to be developed than
would arise by slavishly adopting the OMG Java mappings for CORBA. However the
implementation does include the CORBA IIOP protocol so that it is possible to connect from
a FollowMe system to an existing CORBA infrastructure. In particular, the project did not
adopt the CORBA Agent Facility. Partly this was a consequence of the specification
appearing after the project had committed to design decisions based on direct exploitation of
Java facilities. It is commonly the case in industry for there to be optimised Java interfaces
exploiting the full power of the language with a mapping to CORBA being offered for legacy
integration. (For example the Java Enterprise Java Beans specification uses the CORBA IIOP
protocol and Object Transaction Service in its implementation, but does not directly offer
CORBA APIs to the developer).

The Mobile Object Workbench and Information Space tasks delivered an infrastructure which
enables Java developers to implement objects using the full facilities of Java and transparently
provide facilities for mobility and persistence. To obtain these facilities the developer must
inherit from appropriate classes and respect a simple protocol for stopping and restarting
objects. What this architecture does not provide is the concept of a thread of execution that
can migrate from place to place. This functionality is provided by the scripting facilities
produced by the Intelligent Agent task. This has worked out to be an excellent division of
abstractions. A systems programmer can work at the Mobile Object Workbench / Information
Space level with full Java including concurrent threads, reflection, introspection, and remote
procedure call. An applications developer can work at the scripting level where the
complexity of these systems issues is completely masked and high level agency facilities are
provided. We contrast our result with contemporary mobile agent systems that do not provide
a separate mobile object infrastructure for the system’s programmer. Instead they bundle
agency and mobility into a single API forcing a single transparency selection on developer,
seriously limiting flexibility and extensibility.

The principal design parameters for the Mobile Object Workbench / Information Space were:

Java Language
We attempted to keep the API and remote object semantics as close to normal Java as
possible. In particular, we use Java interface classes rather than IDL files, as this is more
natural for a Java programmer.

Build for Change
The Workbench was designed to be constantly upgraded and changed. We attempted to
minimise the amount of ‘global knowledge’ and interdependencies between components, so
that parts could be replaced, or new components added.

ID: dl3.doc Follow Me Project

01.04.99 44 of 63 The FollowMe Team

Multiple Everything
The Workbench was designed to be component based, and to allow more than one instance of
any component to co-exist. This is important, for example if a client has to speak two versions
of a protocol. We make very little use of ‘static’ data, as this is intrinsically restrictive.

Reflective Implementation
We attempted to use our own mechanisms internally wherever possible. For example a name,
passed to identify an interface, is an ordinary object, and treated as such when serialised,
deserialised or otherwise manipulated. This approach allows us to change the specification of
one component with minimum impact on other components.

These decisions proved to be highly successfully. Through four versions we added mobility,
persistence, security and transactions to the basic framework proving the concept of “selective
transparency” first introduced in RM-ODP.

A particular consequence of this approach was that the Information Space was delivered as a
structured object store rather than a simple file system as originally proposed. While this
exceeds the needs of the current applications it provides a more general mechanism that can
be exploited to scale up to replicated sites and storage migration for load-balancing and
latency management. This is an interaction between the Information Space and Service
Deployment tasks which there hasn’t been time to explore during the project.

In summary we conclude that our early architectural decisions have stood up throughout the
project. We have extended the state of the art in object mobility for Java and developed a
technology that can be exploited in a number of scenarios beyond the web including network
management and global network application services.

3.2 WP D, E, F: The Agent Framework

3.2.1 Objectives
The Autonomous Agents (D) work package was conceived as a means for providing the
essential agent behaviour for the FollowMe project. The objective was to provide means of
creating agents that would exhibit autonomous behaviour and to realise this behaviour using
the mobility provided by the Mobile Object Workbench (work package B). The intention was
to create agents to accomplish certain tasks; henceTask Agents, and for these agents to be
customisable to meet specific needs of a user. Since agents act on behalf of users it was clear
that it was necessary to provide a means for personalising an agent and the Personal Profiles
(E) work package covered the work necessary to achieve this objective. The intention was to
look at existing approaches for modelling personal data and to adopt an approach consistent
with the overall architecture of the project. Finally, for agents to perform some useful task it is
imperative that they are able to interact with useful services. Aware of the impossibility of
providing a general solution to this problem it was intended that he Service Interaction (F)
work package would focus on the development of a pragmatic solution based on Trading.

3.2.2 Emergence of an Agent Framework concept
From an early stage in the project it was realised that the results from the three UWE work
packages could usefully be combined into a single software deliverable which provided an
Agent Framework; a collection of software components that facilitated the deployment of
autonomous, personalisable, mobile agents.

ID: dl3.doc Follow Me Project

01.04.99 45 of 63 The FollowMe Team

The Agent Framework adopted the weak agency model of Wooldridge and Jennings[]. Whilst
agents in FollowMe are capable of autonomous, social, and responsive behaviour they lack
the rather stronger capability of pro-active (or goal seeking) behaviour. However, the
implementation of the framework is sufficiently open to allow components which implement
learning behaviour to be incorporated.

3.2.3 Agent Framework Components
The main components of the Agent Framework to emerge from the design process were

• Task Agent

• Agent Place

• Personal Assistant

• Personal Profile

• Diary

• Service Profile

• Trader

The implementations are based on the Mobile Object Workbench and the Information Space
from work packages B and C and the interfaces for interaction with the Personal Assistant,
which acts on behalf of the Task Agents, are provided by User Access from work package H.

A complete installation of the Agent Framework therefore requires the Mobile Object
Workbench, Information Space and User Access. Migration of Task Agents between Agent
Places on different host machines in response to machine loading would require the use of
Service Deployment from work package G.

Whilst the Agent Framework was designed to be a collection of components it was thought
necessary to supply a certain number of utilities providing a user interface such that a
programmer could start up a Trader and a Personal Assistant and actually browse, edit and
launch Task Agents with no programming effort at all.

3.2.4 Principle Design Features
The most contentious design issue within the project was to implement an agent scripting
language. It was felt that it would be in the spirit of enabling relatively inexperienced users
the opportunity to craft their own agents. Therefore, UWE coded a complete implementation
of a scripting language based on JavaScript (ECMAScript). This included the facilities to
declare and use external Java classes (scripting used ascomponent glue) and support for
mobility through the use of ajump() call. The later hid a significant amount of Mobile
Object Workbench detail. A complete agent within the Agent Framework consists of the
agent script together with associated implementation classes (if needed) and any XML forms
needed to manage user/agent communication; this combination is known as an agent Mission.
In line with the rest of the project it was decided that the mission itself should be written using
XML. It was also decided that the Personal Profile and Diary should use XML. The overall
design of the Agent Framework benefited from the interaction with the teams developing the
pilot applications from the very beginning.

ID: dl3.doc Follow Me Project

01.04.99 46 of 63 The FollowMe Team

3.2.5 Agent Framework Roll-Out
The Agent Framework was delivered to the project in a number of releases in an attempt to
meet particular requirements of the Pilot Applications. The full details of the capabilities of
each release of the framework are contained in the release notes of the software (currently
v1.4.1). There have been twelve releases of the Agent Framework since the first release on the
18th August 1998; in addition there were some earlier releases of the script engine.

3.2.6 Implementation
The Agent Framework has been implemented in Java and the full source code released to the
FollowMe consortium. It is doubtful whether this project could have been realised in any
other language other than Java, certainly within the tight schedule imposed.

3.2.7 Project Progress
Due to a problem recruiting a third team member at the start of the project UWE were
considerably pressed to meet some of the early design deadlines. In addition, the resources
available in the project and its short time scale meant it was impossible to commit more UWE
staff. As already discussed, the Agent Framework has been implemented using the results of
work packages B, C and H and, like the Agent Framework, the software from other partners
has also been delivered to the project in various releases. Therefore, the reality of delivering
the Agent Framework has required managing the complex software interdependencies
between three partners. Whilst the consortium has the necessary skills and discipline to ensure
that the interfaces between software components have been rigorously specified the
implementation has still taken longer than predicted. To give some idea of the complexity of
the project the Agent Framework distribution contains 366 classes, the Mobile Object
Workbench (including Information Space) 1063 classes and User Access 202 classes.

3.2.8 Project Structure
The project structure in the technical annex describes a fairly traditional waterfall
development methodology with requirements, design, implementation and testing phases.
Whilst this is perhaps useful for reporting purposes it has been less useful as a project plan. A
spiral-like methodology (e.g. DSDM) would perhaps have been more appropriate. Rather than
waiting until the design documents had been approved before starting the implementation it
would have been better, with hindsight, to have started implementing as soon as some of the
basic ideas had been agreed and then for the design, implementation and testing to have
iterated many times over the duration of the project. This would of course have increased the
number of meetings required and would also have complicated the versioning of software.
The Hyperwave server hosted by FAST has been extremely useful as a project repository
(despite some downtime); it would have been interesting to consider the possibility of using
this server as a central repository for developingall the software such that version control
could have been applied across the entire project.

3.3 WP G: Service Deployment

This document gives an overview of the major steps that took place during the elaboration of
the Service Deployment work package.

ID: dl3.doc Follow Me Project

01.04.99 47 of 63 The FollowMe Team

We first worked on designing the Monitoring Tools. These tools are at the root of any
deployment capability since they are used to observe the behaviour of a system, and in turn
take the appropriate decisions depending on the nature of what is observed. We started to
design tools that could be generic enough for being used within the project FollowMe, but
also outside. The need for this king of tools has been identified for long at INRIA. Several
research actions that are independent of FollowMe do study performance-related problems of
distributed computing systems. Each needs some kind of monitoring, but we have developed
almost only ad-hoc tools solely compatible with Unix-based systems. Coming-up with the
appropriate abstraction for having a general definition of the monitoring tools was therefore
crucial.

The software delivered during the summer 1998 is somehow a snapshot of this design
process. We released a complete observation framework offering tools to monitor resources.
Resources can be mapped onto real hardware resources, such as a CPU, or be application
defined. The object-oriented approach made possible the general definition of a Resource as
an Interface. Each implementation of that interface has to provide the code for some methods
that return the consumption of that resource. The observation framework also contains support
for defining precisely the type of monitoring that is relevant to each application,. That
monitoring can be periodic or aperiodic, and in this case, it can be either request-based or
notification-based. The framework also embeds several built-in Filters that transform simple,
basic resource usage values into more elaborated data. We also provide facilities to add
Filters.

The work scheduled during Fall 1998 was supposed to be the implementation of the lower
levels of this framework, that is, the implementation of the pieces of code that are necessary
to obtain from the real hardware resources their usage values. We had however an important
staffing problem because the engineer that was responsible for that part left on a short notice.
That implementation was therefore suspended until we could hire a new engineer. It was
impossible to hire anybody before late November 1998. Once that person was hired, we faced
the complex problems of integration of other software packages provided by other partners.
We consequently asked that person to work on integration problems, further delaying the
implementation of the lowest level of the Service Deployment work package. In additions,
attempts to complete the implementations were facing the complexity and lack of clarity of
the interfaces available on Windows platforms (the ones we currently use for development). It
is important to say that the core of the Service Deployment is ready, that is, tools for
performing periodic observation and for enabling general definition of what is a resource and
how to observe it. In the second pilot application, Service Deployment tools are used in the
context of a load-balancing policy that dynamically determines optimal routes for data flows
depending on the usage of resources. That usage, however, is not obtained from real hardware
resources, but from configuration files that are viewed by the Service Deployment as user-
defined resources.

We also worked on Data-Mining issues. Data-mining used together with clustering techniques
has been implemented and evaluated. It has proved to be beneficial to client-server systems in
which the server side is made of cluster of computers. In this case, grouping readers having
close profiles on specifics clusters increases the hit-ratio of the buffers of the servers, thereby
enforcing timeliness and scalability. The main work was to devise a dynamic data-mining
algorithm since typical mining algorithms are static, and can not therefore cope with the
possible dynamic update users could make to their profiles.

ID: dl3.doc Follow Me Project

01.04.99 48 of 63 The FollowMe Team

3.4 WP H: User Access

A key objective of the project was to enable users to access the system through a variety of
different media, but without losing quality of the interaction.

During the development of the project a two major decisions have to be taken:

• Which devices need to be supported?

• What is an adequate architecture to translate service in- and output to device capabilities?

During the project planing phase, java enabled devices were in the focus of the considerations
for user access. However a first survey during Oct. to Dec. 97 showed that (besides java
enabled browsers) no such devices were available on the market. Also a first requirements
analysis triggered from the pilot applications indicated that in order to have a large user base
also non java-enabled devices as e.g. fax, email, and HTML-browsers needed to be supported.
Thus the decision was to develop a generic java-enabled device (the so-called swing entry
point) and to extend the support also to non java-enabled devices as fax, SMS, email, etc.

These device types exhibit considerable different rendering capabilities. In order to achieve a
general mechanism for translating information into a layout suitable for a certain device was
needed. The choice fall on the emerging XML/XSL standard, as XML was suitable to
describe arbitrary structured information and XSL was to support independent layout
descriptions. XML was announced as a W3C recommendation in February 98. XSL is
currently a working draft in the latest version from December 98. Tying the information and
layout description to these “de-facto”-standards ensures a broad support for the information
and layout description used by the user access component.

Mapping to different layout capabilities is achieved by providing different layout descriptions
either in separated XSL documents, or in one XSL document with different layout modes.

Currently the following device types are supported:

• Http-Entry Point for WWW-Interfaces like Web-Browsers

• Fax Gateway for Fax-Delivery

• Email Gateway for text mail messages

• SMS Gateway for delivery of short messages to a GSM based cellular phone

• Swing Device Gateway for local document delivery on java-enabled devices

• Offline HTML Device Gateway for producing an offline readable set of HTML-
documents

The user access is now integrated into the agent framework and extensively used in both pilot
applications.

3.5 WP I: The Bavaria-Online Pilots

The objective of work package I (pilot application 1) within the FollowMe project was to
measure the applicability of both the FollowMe architectural concepts and their

ID: dl3.doc Follow Me Project

01.04.99 49 of 63 The FollowMe Team

implementations by the technical work packages by designing and implementing two pilot
applications and deploying and evaluating them in a real world field test.

The applications were to be deployed at five pre-selected nodes within the Bavaria Online
citizens network. The first activity within work package I was therefore to discuss application
demands of Bavaria Online users with the operators of the Bavaria Online nodes. To separate
themselves from standard internet service providers the Bavaria Online nodes aim to offer
their members access to value-added information services with regional focus.

Hence we decided to not only develop two specific information services but to provide a
generalised application framework for the development of agent-based, user customisable
information gathering and filtering services and to apply this framework to two specific
knowledge domains. Thus requirements analysis and design documents were split into two
parts: one defining the application framework, the other describing the domain specific details
of the two example services.

The criteria for selection of suitable domains were threefold: user interest, availability of
content providers and, last not least, potential for full exploitation of core features of the
technologies to be developed in the FollowMe project. To identify the domains we
interviewed Bavaria Online users as well as potential information suppliers. Based on the
results of these interviews we decided to implement a service providing information on social
events (e.g. cinema and theatre shows, local markets and auctions, meetings of local
associations, etc.) and a user customisable share value information service.

During the requirements analysis and application design phases, we constantly interacted with
the project partners providing the underlying technical infrastructure to ensure that the
technology would match the requirements of our pilots. In particular we had many bilateral
discussions with the designers of the FollowMe agent framework and our ideas and
requirements had major influence on the design of the agent framework.

When first releases of the basic protocol layer infrastructure - the MOW and the Information
Space - became available, we started with the implementation of the application specific
libraries of the event notification service. Application specific functionality and object
persistency were tested via simple command line interfaces.

As soon as User Access modules, device gateways and first components of the agent
framework became available, we began integrating these components and implemented user
interfaces in XML/XSL. A first prototype of the event notification service was then presented
to the operators of the participating Bavaria Online nodes.

Implementation of the share value information system started as soon as the first prototype of
the event notification system had been completed. The experiences gained during
implementation of the first service greatly reduced the effort required for implementation of
this second service, thus proving the value of the generalised application framework.

A first full release of the event notification system was deployed at Bavaria Online nodes and
opened for public access by the Bavaria Online user community three month before the end of
the project. The share value information service was deployed and published six week later.

Usage of the services was monitored via system log-files and direct feedback from users was
obtained via a web-based questionnaire. The results were evaluated and discussed with
Bavaria Online operators who already started planning of future enhancements and
development of additional services.

ID: dl3.doc Follow Me Project

01.04.99 50 of 63 The FollowMe Team

3.6 WP J: ETEL++ Pilot Application

This document gives an overview of the major steps that took place during the elaboration of
the second pilot application, namely ETEL++. It reflects the chronology of the processes that
lead to the achievement of the application.

INRIA and TCM were having close relationship before the beginning of the FollowMe
European Esprit Project. Both were involved in the conception of an electronic newspaper
derived from the daily paper published by Ouest-France. FollowMe appeared as a good
opportunity for experiencing with new technologies, and as a fruitful testbed in which avant-
garde ideas could be validated.

One of the first design choice (global to the whole project) was an agreement of using XML
as a general language for describing and encoding the data used throughout the software
packages developed by each individual partner. We therefore worked together with TCM to
design a schema representing the articles manipulated by ETEL++ having XML in mind. We
came up with a new document model representing the articles and their dependencies.
Together with this model, we implemented an article converter that consumes articles stored
under a proprietary format (the one used by Ouest-France) and that produces articles
following XML requirements.

This new document model fits ETEL++ requirements. These requirements, however, do not
consider all the complex issues of producing a newspaper at a real scale, for real users in the
field. We therefore took advantage of this design process to re-think the actual data schema
used by Ouest-France (independently of ETEL++) and to improve it when this was possible.
We had to analyse the complete database schema of the articles used every single day by
journalists to store their articles. This database both relies on an object-oriented and a
relational database management system, and complex ad-hoc bridges are required for
transferring data back and forth. As a result, our original document model proposed for
ETEL++ as been augmented to cope with all of the real data managed by Ouest-France. This
model is currently under implementation. The design of this model was completed late 1998
(an intermediate version was ready late spring 1998).

Since the basic format used to represent articles was XML, we had to search for a tool that
would allow the parsing of these articles. This parsing is necessary to build the data structures
required for high level processing (like assembling several disjoint articles to build a
personalised edition). After several trials, we decided to use the freeware XML parser created
by Norbert H. Mikula. This parser is used (among other things) to isolate the keywords
attached to each article, to extract the semantically different sections of each article (like its
title, its body, etc.) and to make possible the construction of a global map where related
articles are linked together (related by subjects, keywords, or by a direct reference).

We then implemented a first version of ETEL++ to test the newspaper-assembling engine that
we designed on top of the intermediate document model (this engine –which is the core of the
pilot application— is presented in Document DJ3). In parallel to the implementation of this
first prototype (internal and not demonstrated), we conducted extensive experiments to get
accustomed to the mobility and transparencies features of the MOW and of the IS provided by
APM.

Once we were comfortable with the MOW+IS, we extended our prototype. This first
(external) release, which corresponds to the one demonstrated in September 1998 in Rennes,
was able to generate personalised editions in a distributed manner. This release, however, was
not including any Service Deployment feature, nor any Agent or User-Access code.

ID: dl3.doc Follow Me Project

01.04.99 51 of 63 The FollowMe Team

We initiated in fall 1998 the design of the second and final version of ETEL++. This second
version differs from the first one released by (i) its document model as mentioned above, (ii)
extensive use of both White and Black box objects, (iii) integration of a load-balancing policy
to deploy the service adequately, (iv) integration of Agents to get context sensitive data and
(v) integration of User Access to support multiple terminals.

In parallel, we experienced with the Agent Framework to understand their ins and outs. We
also developed a graphical tool that will show, during the demo, the flow of article between
all the machines participating in the construction of the newspaper. This tool is a convenient
way for illustrating the load balancing decisions, since data-flows differ depending on the
workload placed on the servers.

In general, we would like to emphasise the difficulties of integrating in a prototype some
software that is developed by another partner. The first obstacle is to get a clear understanding
of each other’s, in terms of requirements, features, capabilities, etc… The frequent and
periodic meetings that took place were very helpful to increase the level of understanding. A
second difficulty is to perform this integration in such a short time frame. The duration of the
FollowMe project is very short with respect to the hard issues tackled by each partner.
Scheduling constraints and inter-dependencies make the integration process longer and more
difficult than expected. Periodic meeting were again of a great help, and it is interesting to
note that during the last meetings, some code was writtenlive to clarify some hard aspects of
the integration. The third obstacle, which is inherent to computer programming, is to report
bug and get the fixes. This last task is of course a major source of time consumption.
Integration is particularly crucial in the case of ETEL++ since it has to integrate work fromall
other partners. Any delay in any part delivered had an impact of our own scheduling.

ID: dl3.doc Follow Me Project

01.04.99 52 of 63 The FollowMe Team

4 Exploitation activities

It is in the interest of all partners to make the component architecture available to the broad
public as seedware. The partners have agreed to license the results of FollowMe to each other
beyond the end of the project, but not to develop an detailed joint exploitation plan. They do
not consider this an efficient exploitation path. Rather than that each partner will exploit its
results individually. This section gives an overview to the exploitation activities of each
partner.

4.1 Citrix Exploitation Activities

Since APM's acquisition by Citrix effort has been spent on the investigation of product
opportunities within the Citrix product range. This has involved a significant amount of work
by the APM project members. However the exact nature of the exploitation is commercially
sensitive. If details are required APM is willing to provide a separate disclosure to the
commission or reviewers in an agreed format.

4.1.1 Presentations
Citrix has actively co-developed FlexiNet/MOW with the ANSA Consortium, through

Citrix's membership of both groups. ANSA includes ICL, Fujitsu, BT, Marconi Telecoms,
GEC-Marconi, France Telecom. FlexiNet/MOW presentations and workshops have been held
with all of these.

The FlexiNET/MOW work was extensively reviewed by Citrix in their acquisition of APM
Ltd.

4.1.2 Publications

Papers about FlexiNet and the Mobile Object Workbench were presented at:

• SIGOPS European Workshop Lisbon, Sept 98

• Middleware lake District, Sept 98 (to be republished in IEE Journal on Distributed
Computing, and a volume on selected papers from the workshop)

• Mobile Agents, Stuttgart, Sept 98

• BT Technical Journal (upcoming issue)

• Contribution on FlexiNet in a book on “state-of-the-art in distributed systems research”,
published by the BROADCAST working group (to appear).

ID: dl3.doc Follow Me Project

01.04.99 53 of 63 The FollowMe Team

4.2 FAST Exploitation Activities

FAST plans to exploit agent based technology in further customer projects. Major target
groups are financial institutions and public administration. In co-operation with the Bavarian
Bürgernetze further agent-based services will be developed.

4.2.1 Presentations
FAST made a number of presentations to address potential customers.

Date, Location Participants Contents

13.1.98,
Waldkraiburg

Representatives of the
Sparkasse (savings bank) and
Raiffeisenbank Waldkraiburg
and of the Bürgernetze

Presentation of FollowMe portfolio pilot application
and discussion of the involvement and future service to
bank customers

26th and 27th of June,
Munich

Bayern-Online Kongress Presentation on FollowMe, and a stall organised by the
Bavarian Bürgernetze at the exhibition

7th of July, Munich Techno-Z CEO G. Kreilinger,
Braunau (Austria)

Presentation of FollowMe, discussion of a pilot
installation of an active call for tender data base.

17th of July, Munich B. Gebauer, Vice President of
the Dachverband der
Bürgernetze

Discussion on potential extensions and
commercialisation of the pilot application in 1999.

23rd of July, 22nd of
Sept., Munich

Dr. Franzen, Bavarian
Ministery of Interior, H.
Göttlinger, CEO of Behörden-
Online

Presentation of FollowMe and discussion on potential
exploitation in public administration.

17th of March 99 B. Gebauer, President of the
Dachverband der Bürgernetze

Discussion of potential extensions and
commercialisation of further agent-based services

4.2.2 Publications
A scientific publication for an overview to the Bavaria-online pilot application was prepared
and published on the AAAI Symposion on Agents in Cyberspace, March 99.

Diverse newspaper articles were published in the Süddeutsche Zeitung.

4.2.3 Collaboration with other Projects
FAST is partner in AgentLink, an EU sponsored initiative for the co-operation of agent based
projects. FAST registered for the SIG on Intelligent Information Agents and participated on
the formation meeting at the 24th and 25th of September.

FAST was invited to present FollowMe on the Climate (Cluster for Intelligent Mobile Agents
for Telecommunication Environments) Workshop on Mobility on 5th of May. FollowMe is
registered as an associated project to the Climate initiative and participates in the Profile
working group.

ID: dl3.doc Follow Me Project

01.04.99 54 of 63 The FollowMe Team

4.3 INRIA Exploitation Activities

INRIA has made several presentations related to the work we achieved in the context of the
FollowMe Project at different places:

• 8th ACM SIGOPS European Workshop, Sintra, Portugal, September 1998,
“ Introducing Contextual Objects in an Adaptive Framework for Wide-area Global
Computing”, A.-M. Kermarrec, P. Couderc, M. Banatre. This presentation details some of
the ideas related to the Context-Sensitive Data mentioned in Document DJ3.

• EEMA Annual Conference & Exhibition, Electronic Commerce Europe 99, Paris, June
1999, “ETEL - A multimedia experience in a newspaper environment”. This talk presents
the ETEL and ETEL++ electronic press services.

INRIA submitted to publication the following journal paper:

• “Quality of Service and Electronic Newspaper: The Etel Solution”, B. Charpiot, J.-M.
Menaud, V. Issarny, M. Banatre. Also under publication as an INRIA Technical Report.
This paper investigates the use of Data-Mining in the context of an electronic press
service.

One Ph. D. Thesis is under preparation, and another one is completed. Both are related to the
electronic press activities at INRIA:

• Boris Charpiot. “L'extensibilité par la répartition thématique des accès à un système
d'informations distribuées”, Thèse de l'Université de Rennes 1, Rennes, France,
December 1998.

• Frédéric Le Mouël. “Environnements adaptatif d’exécution distribué sur Internet”. In
preparation.

4.4 UWE/ICSC Exploitation Activities

ICSC has started dialogue with a small Bristol based company that is developing Java
applications for mobile Java enabled devices with a view to investigating possible
collaboration on developing products. ICSC is also talking to the Transport Research
Laboratory Ltd. in order to obtain near real time road traffic information so that ICSC can
look at Agent based applications for the dissemination of road congestion reports to users.

UWE is participating in the AgentLink initiative.

4.5 TCM Exploitation Activities

The major targets of TCM exploitation plan, are Ouest-France and its partners of the French
SPQR (Daily Regional Press Society). Because electronic newspaper will become a necessary
and complementary channel to broadcast news, the design of Etel++ has been done in order to
deliver a pilot application close to concerns of electronic press publishing.

TCM has present Follow-Me and especially Etel++ to the partners of the French SPQR. The
first presentation in Paris (April the 1st) was an overall description of the concepts, the second

ID: dl3.doc Follow Me Project

01.04.99 55 of 63 The FollowMe Team

one (13th of May) was done to address potential customers and to get their expectations in
regard with their further project.

With the first prototype of Etel++, three presentations have been done:

Date, Location Participants Contents

23rd of September,
Rennes

Ouest-France
Antoine de Tarlé (vice-
president) Jean-Paul Boucher
(Technical Director)

Presentation of FollowMe Etel++ pilot application.
Discussion about the commercial potential strength of
these application in the press market

29th of September,
Rennes

Atlantel (Multimedia
Subsidiary of Sud-Ouest
second major French regional
daily newspaper after Ouest-
France)
Jean-Lois François (Director)
Bernard Lafitedupond
(Technical Director)

Presentation of FollowMe Etel++ pilot application.
Discussion on potential extensions and
commercialisation with their electronic newspaper.

7th of October,
Rennes

Precom (Ouest-France's
advertising production agency)
Philippe Toulemonde(Director)
Serge Fiedler (account
executive)

Presentation of FollowMe Etel++ pilot application.
Discussion of would be possible to show (promotional
sale ...) when you move inside the Ouest-France's
regional area. Potential cost of this service for
advertiser

ID: dl3.doc Follow Me Project

01.04.99 56 of 63 The FollowMe Team

5 Deliverables

5.1 Final Reports

In the following you find a list of final reports, as defined in the technical annex of the
project.

The report deliverables are organised in documents. In order to simplify the organisation of
the sheer amount of deliverables, related deliverables where combined into one document.

• WP A: Will Harwood et al.:Architecture, (DA1.3)

• WP B: Richard Hayton,Mobile Object Workbench v2.0, (DB 7.4, DB 8.3)

• WP C: Douglas Donaldson, Richard Hayton,Information Space(DC 4, 5.2, 6.3)

• WP D, E, F: St. Battle, N. Taylor, J. Tidmus, M. Yearworth,Agent Framework Guide
(DD5.3, DD6.4, DE5.3, DF5.3, DF6.3)

• WP G: L. Amsaleg, et al.,Service Deployment Design, (DG3, DG4)

• WP G: L. Amsaleg, et al.,Service Deployment Final Report, (DG 6.2)

• WP H: M. Breu, et al.,User Access Software Report, (DH 6.3)

• WP I: H.-G. Stein, et al.,Pilot Application 1, Evaluation Report, (DI5)

• WP J: L. Amsaleg, et al.,Pilot Application 2: Description of the Working System,(DJ5)

• WP K: FollowMe Project Board:Exploitation Plan, (DK2, restricted)

• WP L: M. Breu et al.,FollowMe Final Report(DL3)

5.2 Deliverable Status

The following list shows the status of all deliverables:

• Internally available: The deliverable was produced and distributed project-internally. It
either serves as an internal basis for technical decisions and preparation of the further
deliverables or is a software product that is distributed project-internally. Those
deliverables are not handed over to the reviewers. But they can be made available on
demand

ID: dl3.doc Follow Me Project

01.04.99 57 of 63 The FollowMe Team

• released: The deliverable has successfully undergone a formal project-internal review
process.

Deliverable Name Type Month Status

DA1.1 Architecture Report Report 2 Internally
available

DA1.2 Architecture Report Report 6 released

DA1.3 Architecture Report Report 12 released

DB1 Survey Report 1 Internally
available

DB2 Requirements Report 2 released

DB3 Design Report 3 released

DB4 Interface Specification Software 3 released

DB5.1 O/S Objects Software 4 Internally
available

DB5.2 O/S Objects Software 7 released

DB6.1 Object Locator Software 4 Internally
available

DB6.2 Object Locator Software 7 available

DB6.3 Object Locator Software 9 released

DB7.1 Mobile Object Workbench Software & Report 4 Internally
available

DB7.2 Mobile Object Workbench Software & Report 7 Internally
available

DB7.3 Mobile Object Workbench Software & Report 9 internally
available

DB7.4 Mobile Object Workbench Software & Report 12 released

DB8.1 Mobile Data Object Software & Report 5 Internally
available

DB8.2 Mobile Data Object Software & Report 7 Internally
available

DB8.3 Mobile Data Object Software & Report 9 released

DC1 Requirements Report 3 released

DC2 Design Report 4 released

DC3 Interface Specification Software 5 Internally
available

DC4 Object Sharer Software 9 available

DC5.1 User Authentication Software 9 Internally
available

DC5.2 User Authentication Software 13 released

DC6.1 PIS Object Software & Report 6 Internally
available

DC6.2 PIS Object Software & Report 9 released

DC6.3 PIS Object Software & Report 13 released

DD1 Survey Report 3 Internally
available

DD2 Requirements Report 4 released

DD3 Design Report 5 released

DD4 Interface Specification Software 6 released

ID: dl3.doc Follow Me Project

01.04.99 58 of 63 The FollowMe Team

Deliverable Name Type Month Status

DD5.1 Task Agent Shell Software & Report 7 available

DD5.2 Task Agent Shell Software & Report 10 released

DD5.3 Task Agent Shell Software & Report 13 released

DD6.1 Personal Assistant Software & Report 7 internally
available

DD6.2 Personal Assistant Software & Report 8 released

DD6.3 Personal Assistant Software & Report 10 shifted to PM 13

DD6.4 Personal Assistant Software & Report 14 released

DE1 Survey Report 2 Internally
available

DE2 Requirements Report 3 Internally
available

DE3 Design Report 4 released

DE4 Interface Specification Software 4 released

DE5.1 Profile Object Software & Report 5 delivered

DE5.2 Profile Object Software & Report 8 released

DE5.3 Profile Object Software & Report 11 released

DF1 Survey Report 2 Internally
available

DF2 Requirements Report 4 Internally
available

DF3 Design Report 5 released

DF4 Interface Specification Software 6 released

DF5.1 Service Shell Software & Report 7 available

DF5.2 Service Shell Software & Report 10 released

DF5.3 Service Shell Software & Report 13 released

DF6.1 Service Directory Software & Report 7 released

DF6.2 Service Directory Software & Report 10 released

DF6.3 Service Directory Software & Report 13 released

DG1 Survey Report 3 Internally
available

DG2 Requirements Report 4 Internally
available

DG3 Design Report 6 released

DG4 Interface Specification Software 7 available

DG5 Group Profile Analyser Software 8 available

DG6.1 Service Deployer Software & Report 12 shifted

DG6.2 Service Deployer Software & Report 14 released

DH1 Survey Report 2 Internally
available

DH2 Requirements Report 3 Internally
available

DH3 Design Report 4 released

DH4 User Interface Language Report & Software 5 released

DH5.1 Device Adapters Software 6 internally avail.

DH5.2 Device Adapters Software 9 available

ID: dl3.doc Follow Me Project

01.04.99 59 of 63 The FollowMe Team

Deliverable Name Type Month Status

DH5.3 Device Adapters Software 13 internally
available

DH6.1 User Access Module Software & Report 6 internally avail.

DH6.2 User Access Module Software & Report 9 released

DH6.3 User Access Module Software & Report 13 released

DI1 Survey Report 3 Internally
available

DI2 Requirements Report 6 released

DI3 Design & Objectives Report 8 Internally
available

DI4.1 Working system Software 10 available

DI4.2 Working system Software 15 released

DI5 Evaluation Report Report 18

DJ1 Survey Report 3 Internally
available

DJ2 Requirements Report 6 released

DJ3 Design & Objectives Report 8 available

DJ4.1 Working system Software 10 available

DJ4.2 Working system Software 15 available

DJ5 Evaluation Report Report 18 released

DK1 Agreement on IPR Report, External 6 available (with
DL 1)

DK2 Consortium Exploitation Plan Report, External 15 released

DL1 Consortium Contract Contract 3 internally
available

DL2 Project Progress Report Report 6 released

DL3 Project Progress Report Report 12 released

DL4 Final Project Report Report 18 (this document)

ID: dl3.doc Follow Me Project

01.04.99 60 of 63 The FollowMe Team

Annex A

Project Meetings

The following project meetings took place during the reporting period. Minutes and/or slides
are available on the project server.

Date Location Meeting

15th/16th Oct. 97 Munich Project kick-off meeting (all)

29th Oct. 97 Bristol Integration of APM and UWE work packages (APM,
UWE)

30th/31st Oct. 97 Rennes Technical meeting ETEL requirements and User Access
(INRIA, TCM, FAST)

10thNov. 97 Windsor MOW and Agent integration (APM, UWE)

17th/18th Nov. 97 Bristol Technical project meeting (all)

11th/12th Dec. 97 Munich Technical project meeting and board meeting (all)

3rd/4th Feb. 98 Cambridge Design walkthrough of MOW (APM, UWE)

26th/27th Feb. 98 Rennes Technical project meeting (all)

22nd-24th April Cambridge FollowMe Team Meeting and Management Board

27th-28th May Bristol Meeting between UWE and FAST to discuss implementa-
tion of Pilot Application (WP I) using Agent Framework

9th June Brussels Preparation for 1st Review

10th June Brussels FollowMe 1st Review

27th – 29th July Munich FollowMe Team Meeting

30th September –

2nd October

Rennes FollowMe Team Meeting and Management Board

13th – 15th of
January 99

Munich FollowMe Team Meeting and Management Board

Roster of Personnel on the Project

The following staff members contributed to the project.

ID: dl3.doc Follow Me Project

01.04.99 61 of 63 The FollowMe Team

Company Name Role in the Project

APM M. Bursell Software Engineer: Architecture and Mobile Workbench

D. Donaldson Software Engineer: Architecture, MOW and Personal
Information Space

D. Franklin Software Engineer: Architecture and Personal Information
Space

W. Harwood Software Engineer: Architecture and MOW
R. Hayton Software Engineer: Architecture and MOW
A. Herbert Project leader at APM, Project Board , Chief Architect
R. Chiltern Software Engineer: MOW
J. Cooper Software Engineer: MOW
M. Madsen Software Engineer: Internal Review
T. Ugai Software Engineer: Security

FAST M. Breu FollowMe Project Manager, software engineer
L. Gebauer Contact Manager: Pilot Application
R. Haggenmüller Project Board
H. Nandasena Project Assistant
S. Pöllot Software Engineer: User Access and Pilot Application
P. Scheideler Software Engineer: User Access
J. Pitadenyia Software Engineer: User Access and Pilot Application
A. Rajakarunana-
yake

Software Engineer: Pilot Application

R. Krutisch Software Engineer: Pilot Application
H.-J. Buchberger Software Engineer: Pilot Application
H.-G. Stein Software Engineer, Work package co-ordinator WP J (Pilot

1)
A. Sindermann Software Engineer: User Access
E. Triep Work package co-ordinator WP H (User Access)
R. Sembacuttiara. Software Engineer: Version Management
H. Köhler Project Assistant
S. Radspieler Software Engineer: Pilot Application
T. Delpagoda Software Engineer: User Access
F. Matulic Software Engineer: User Access

INRIA L. Amsaleg Full time engineer: ETEL++
M. Banatre and
V. Issarny

Project leaders at Inria

M. Billot Full time engineer: WP-G (Service Deployment)
P. Couderc PhD student: mobility of documents
A-M. Kermarrec Researcher: mobility of documents
J-P. Routeau Engineer, helps in building the bridge between ETEL and

ETEL++
A. Chafaqi Full Time engineer (integration tasks)
J B. Charpiot Ph. D Student, Investigations related to the use of Data

Mining within the project.
F. Le Mouël, Ph. D Student, Investigations related to context-aware

information retrieval.
TCM M. Le Nouy Engineer: Etel++.

C. Philibert Project leader at TCM, project board,
B. Toullier Engineer: Etel++,

ID: dl3.doc Follow Me Project

01.04.99 62 of 63 The FollowMe Team

Company Name Role in the Project
UWE S. Battle Software Engineer and Researcher: WP D

L. Bull Project Mentoring: WP D, E and F
N. Taylor Software Engineer and Research: WP F
J. Tidmus Software Engineer and Research: WP E
M. Yearworth Work Package leader for WP D, E and F, FollowMe

Management Board and Project leader at UWE, Exploitation
activities

ID: dl3.doc Follow Me Project

01.04.99 63 of 63 The FollowMe Team

References

[1] XSL: A Proposal for XSL (http://www.w3.org/TR/NOTE-XSL.html)
[2] Extensible Style Sheet Language (XSL), Version 1.0, W3C working draft, 18. Aug. 98,

http://www.w3.org/TR/WD-xsl
[3] XML: Extensible Markup Language (XML) 1.0, W3C Recommendation 10-February-1998

(http://www.w3.org/TR/1998/REC-xml-19980210)
[4] Will Harwood et al.: Architecture, (DA1.3)
[5] Richard Hayton, Mobile Object Workbench v2.0, (DB 7.4, DB 8.3)
[6] Douglas Donaldson, Richard Hayton, Information Space (DC 4, 5.2, 6.3)
[7] St. Battle, N. Taylor, J. Tidmus, M. Yearworth, Agent Framework Guide (DD5.3, DD6.4, DE5.3, DF5.3,

DF6.3)
[8] L. Amsaleg, M. Billot, P. Couderc, V. Issarny, A.-M. Kermarrec, M. Le Nouy, J.-P. Routeau, Service

Deployment Design, (DG3, DG4)
[9] L. Amsaleg, et al., Service Deployment Final Report, (DG 6.2)
[10]M. Breu, et al., User Access Software Report, (DH 6.3)
[11]H.-G. Stein, et al., Pilot Application 1, Evaluation Report, (DI5)
[12]L. Amsaleg, et al., Pilot Application 2: Description of the Working System, (DJ5)
[13]FollowMe Project Board: Exploitation Plan, (DK2, restricted)
[14] M. Breu et al., FollowMe Final Report (DL3)

