

ESPRIT Project N. 25 338

Work package I

Pilot Application 1

Requirements & Architectural Design

ID: WP_I_Req&ArcDesign V. 1.2 Date: 15.05.1998

Author(s): Hans-Guenter Stein, FAST e.V.

Lioba Gebauer, FAST e.V.

Abhaya Rajakarunanayake, FAST e.V.

Status: deliverable

Reviewer(s): Distribution: Project internal &
EC reviewers

Change History

Document Code Change Description Author Date

WP_I_Req&ArcDesign Version 0.5. No changes. Stein,

Rajakarun-
anayake

25.02.98

WP_I_Req&ArcDesign Version 0.8. Input from Gebauer Stein,
Gebauer,

Rajakarun-
anayake

06.03.98

WP_I_Req&ArcDesign Version 1.0. Changes by Stein Stein,
Gebauer,

Rajakarun-
anayake

16.03.98

WP_I_Req&ArcDesign Version 1.1 Changes by Stein Stein,
Gebauer,

Rajakarun-
anayake

07.04.98

WP_I_Req&ArcDesign Version 1.2 Changes by Stein Stein,
Gebauer,

Rajakarun-
anayake

15.05.98

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page i

1 AGENT-BASED APPLICATION FRAMEWORK 2

1.1 Motivation 2

1.2 Architectural Framework for WP I Applications 3
1.2.1 Scenario description 4
1.2.2 Pilot Applications 7

2 REQUIREMENTS 9

2.1 Use Cases for the Actor User 10

2.2 Domain specific Use Cases for the Actor User 13
2.2.1 Stock Portfolio Management System 13
2.2.2 Regional Event Notification System 16

2.3 Use Cases for the Actors Information and Service Providers 18

3 ARCHITECTURAL DESIGN: USE CASE ANALYSIS 20

3.1 System Component Model 20

3.2 Use Cases for the Actor User 24

3.3 Domain specific Use Cases for the Actor User 29
3.3.1 Stock Portfolio Management System 29
3.3.2 Regional Event Notification System 32

3.4 Use Cases for the Actors Information and Service Providers 34

4 ARCHITECTURAL DESIGN: EVENT FLOW MODELS 35

4.1 Domain-independent event flow 35

4.2 Stock domain specific event flow 42

4.3 Event notification domain specific event flow 48

5. DEPLOYMENT OF SYSTEM COMPONENTS 54

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 1

Overview

In workpackage I a set of services is established, based on a framework that provides a generic
method for constructing domain specific, user customizable services for context related information
retrieval on the internet. The approach taken is to logically separate information sources (raw data)
from services (data processing applications). The aim is to give end users high level access to cus-
tomized information by providing them with access to services rather than letting them deal with
locating and filtering raw data from potentially highly distributed information sources on the internet.
The framework is validated by two pilot applications implementing services in the domains of stock
portfolio management and regional event notification. The applications are implemented in the
Bavaria Online Citizens network which provides a large base of potential users. System components
will be initially deployed at FAST and five different Bavaria Online Citizens network nodes.
The requirements for workpackage I are specified by identifying use cases both for the generic sce-
nario of locating and using services and for the domain specific functionality required by the two
pilots. The architectural design maps these use cases on the agent-based system components pro-
vided by the technical workpackages D, E, F and H and provides sequence charts to illustrate the
system internal control flow for each of the use cases. The architectural design serves as input for the
design work of the workpackages providing the required technologies (namely WP D, E, F and H).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 2

1 Agent-based Application Framework

1.1 Motivation

Efficient information management and retrieval is becoming the key success factor to almost any
human activity – be it in business or private life. The well known problem of ‘information overload’
is omnipresent in the Internet. Thus the challenge we face is to structure the contents of the web and
to develop easy to use tools that assist information consumers in locating the information sources
that best fit their needs.
Thus the major objective of the FollowMe pilot applications in WP I is to exploit the mobile agent
technology to develop a support infrastructure for information consumers. In this document section
we outline an agent interaction framework that facilitates an information brokering and information
retrieval infrastructure build on top of the architectural concepts developed in WP A, B, C, D, E, F,
G and H. Users can customize agents that serve as interfaces to information services. These agents
are potentially mobile so they may move whenever appropriate depending on the specific tasks they
are designed to service. The systems supports location transparent agent and data addressing giving
both users and agent developers maximum flexibility with respect to mobility. Users may interact
with their personalized agents through a variety of different device types as outlined in WP H: User
Access.
The pilot applications will be deployed at a number of internet nodes that are part of the Bavaria
Online user organization. The Bavarian Online user organization was chosen as a partner since they
provide a large user base and a distributed network of nodes where agents can run.

NOTE: Section 3 (Use Case Models) and section 4 (System Specification) provide a design related
analysis of the system requirements for the intended pilot applications. Since the purpose of these
document sections is to provide a guideline to detailed system design and implementation, annota-
tions to use cases and sequence charts have been added wherever we saw the need for further inves-
tigations that are beyond the scope of this document but will be an issue for the system design and
implementation phase.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 3

1.2 Architectural Framework for WP I Applications

The architectural framework for WP I applications is designed to enhance information retrieval and
information filtering in large scale, heterogeneous networks like the Internet. It is build on top of the
architectural concepts developed by the other project partners as illustrated in
Figure1.

A
utonom

ous
 A

gents

Service Interaction

Personal
Profiles

Service
D

eploym
ent

Inform
ation Space

Framework for WP I Applications

U
ser A

ccess
Application/Service 1 Application/Service 2

Information Space

Mobile Object Workbench

Figure1: Architecture Framework for WP I Applications

Upon designing this framework, we identified the following core issues related to any system of dis-
tributed data sources:
- The use of any database is not only defined by the sheer amount of collected data, but by the

applications or services that operate on the contents of the database to provide information in
form of customized results to the users of such systems.

- In order to enable the development of useful database applications, any database needs to pro-
vide a meta-model describing the structure of the offered data.

- To gain the most from largely distributed databases, the development of database applications
should be de-coupled from the maintenance of the databases themselves. That way, the contents
of data sources can be re-used and re-combined when developing new applications according to
the needs of information consumers.

A first analysis of above issues leads to the most important design decision for the WP I framework:
to de-couple the roles of service providers and content providers. Service providers implement ap-
plications that make use of raw data offered by content providers. They define meta-models de-
scribing the data structures their application are capable of dealing with. In order to enable the serv-
ice providers’ application to make use the data offered by a content provider, the data needs to be
structured according to meta-models that form supersets of the meta- models of the service provid-
ers. This decision leads straightforward to the following core axioms:
- Users of our system will no longer (as is with the Web today) address content providers to obtain

information in raw data format. Instead they will address services that provide them with already
refined information according to their individual needs. The services therefore need to be cus-
tomizable by the individual user.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 4

- Services do not operate on a predefined or hardcoded set of data sources, but on specific data
structures. They may use any data source available at runtime that offers relevant data as long as
it offers an interface the service knows how to use.

These axioms impose the introduction of components that glue things together. On the one hand,
users need to have an effective way of locating services that fit their needs. On the other hand, there
need to exist mechanisms that enable services to locate relevant information sources at runtime. The
appropriate concepts to fulfil these requirements are the ideas of brokers, matchmakers or – more
simply – directory services.
Thus the core components of the FollowMe system have been identified as (see Figure 2):
- content/information providers (offering access to data-objects),
- service providers (providing services operating on data available from the content providers)
- information consumers (users of available services) and
- directory services (mediating between the other components).
The architectural pattern behind this component model is the pattern of information funnel, which is
described in the FollowMe architecture (WP A).

Service
Directory

Service
Provider

Service
Provider

Users

Information
Directory

Information
Directory

Content
Provider

Content
Provider

Content
Provider

Content
Provider

Information

Figure 2: Core components of the FollowMe system

In WP I applications a service is composed of a component related to the information consumer (re-
ferred to as task agent) and a component implementing an interface to content providers (referred to
as service interaction interface). A special user related agent (referred to as personal assistant) as-
sists the user in organizing the usage of services and handling personalized information.
All agents acting on behalf of a user in WP I applications are instantiated on request by downloading
the respective Java classes from so called agent factories to the user trusted environment (referred to
as FollowMe places). The environment is located on a host with permanent online connection (i.e. a
local ISP).

1.2.1 Scenario description

To illustrate the basic concepts of the WP I architectural framework for applications, we describe a
fairly generic scenario. We assume, that the user in the described scenario already owns a personal
assistant and is now on his way to select one of the services offered by FollowMe’s service provid-
ers. As an example we introduce a service that delivers information on regional events (i.e. concerts,
cinemas, markets, exhibitions).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 5

Step 1:
A user connects to the system by contacting his personal assistant (PA). The user may then make
changes to his personal diary, i.e. by stating, that he will be reachable by e-mail during working hours
and by fax otherwise (see Figure 3).

FollowMe Host

PA - Personal
Assistant

User

Personal Profile

UserName: H.-G. Stein
PAName: Aladin
PAPassword:********

Diary

Mo-Fr 9-17: E-Mail: hgs@fast.de
Other: Fax: 089/123456

Figure 3: Contacting the personal assistant

Step 2:
The user wants to use one (or more) of the services offered by the system. The PA connects the user
to a service directory that allows the user to select a specific service the user is interested in. Note
that the PA does not require any knowledge about specific services. This de-couples the user specific
components (such as the PA) from the rest of the system (available information sources and serv-
ices). After selecting a service to subscribe to, the directory service links to the appropriate service
provider (agent factory) and an instance of a task agent representing the respective service is created
on the FollowMe host to service the individual request of its owner (see Figure 4).

FollowMe Host

PA

Choose a service

Delivers new Portfolio
Management Agents

Agent-Factory Server 1

Delivers new Event
Notification Agents

Agent-Factory Server 2

Task Agent TA Order new Agent

Directory Service for
available Services / Task
Agents

- Portfolio Manager
- Regional Event Service
- Used Car Market
- CD Market
- Real Estate Service
- ...

Directory Server
1

2

...
Figure 4: Instantiation of a new task agent

Step 3:
The user may now provide the new task agent with personalized parameters. In case of an event no-
tification service, parameters might include specific event types of interest to the user and location

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 6

and date of events. Moreover the user specifies a time schedule defining when he wants the results
of the service to be delivered (see Figure 5).

FollowMe Host

User

Task Profile (Event Service)

Report: every day at 18:00

Concerts [Classic]
Only Weekends
Max. distance 50 km

Markets [Antiques]
Any Day
Only in my Town

TA

Figure 5: Defining a task profile

Step 4:
After specifying these input parameters the user may disconnect from the system. The specified
service will execute automatically and in regular intervals according to the user defined schedule.
The agent in charge of executing the respective task will contact another directory service that links
it to service interaction interfaces at content provider sites relevant to the application domain of the
task agent (in our example these are providers of regional event information). All the agent needs to
know is the type of interfaces it is capable of connecting to. There is no need to hardcode the ad-
dresses of content providers within the agent. This de-couples service providers (agent providers)
from content providers. That way, new content providers could join the system by registering at the
directory service without the need for changes to existing services. The same holds for the integra-
tion of new services operating on data offered by existing content providers. In our example the
agent connects to servers providing information on regional events and queries these servers ac-
cording to the user specified parameters.
As described in the architectural framework, all objects and thus agents are potentially mobile. Serv-
ice interaction interfaces are capable of providing an agent runtime environment (a FollowMe place –
see WP B: Mobile Object Workbench). Whether an agents makes use of these mobility features de-
pends on the type of service the agent is representing. In applications where communication between
a task agent and a service interface is very intensive (i.e. sophisticated negotiation processes) the
agent could be designed to move to the interface instead of remotely connecting to it (see Figure 6):

FollowMe Host

Search for Information Providers

Concerts, Markets,
Exhibitions, ...

Event Server Munich

TA
Collect data

Directory Service for
Content Providers

- Stock Information
 - NYSE value server
 - FSE value server
- Event Information
 - Events Landshut
 - Events Munich
 - Events Rosenheim
- ...

Directory Server
1

2

Concerts, Markets,
Exhibitions, ...

Event Server Landshut
Stock information from
NYSE

NYSE stock value server

Figure 6: Task execution

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 7

Step 5:
After the task agent finished its task of information retrieval and refining, it stores the information in
the user’s information space for future reference either by the user or by the agent itself (see archi-
tecture framework). In addition the agents might be instructed to deliver reports on new information
to their user. In our example the user instructed the agent to send a report every day at 18:00. Re-
porting might as well be triggered by specific changes to data values or other events (i.e. a stock
portfolio management agent might be instructed to report to the user immediately when a stock ex-
ceeded a specified limit).
To send reports to its user, the task Agent uses the user access components, which provide gateways
to a variety of devices like mail boxes, phones, pagers or fax machines (see architecture framework).
The kind of device to be used for report delivery is stated in the diary section of the user’s personal
profile. The task agent consults the personal assistant to obtain this information. In our example the
appropriate device for delivering reports at 18:00 is a fax gateway (see Figure 7).

FollowMe Host

TA

Task Profile

Report: every day at 18:00

Diary

Mo-Fr 9-17: e-mail: hgs@fast.de
Other: Fax: 089/123456

PA

User's Desktop
(E-Mail)

Fax 089/123456

User's Phone

Deliver report

Figure 7: Delivering a report

1.2.2 Pilot Applications

To validate the above described framework, WP I implements two applications and deploys them at
a number of Bavaria Online nodes. That way, our pilots will be evaluated by a large number of real
users.
The first pilot application is an event notification system and offers basically the features outlined in
the above scenario description: it provides Bavaria Online users with information on regional events.
Content providers in this scenario are local institutions like cinemas, concert organizers, schools,
etc.. Content in this pilot is widely distributed among a variety of different providers, that have close
relations to the providers of the service (the Bavaria Online nodes). Thus this pilot serves as a dem-
onstrator of the concepts of automated information retrieval and filtering among a widely distributed
set of data sources.
The second pilot is a stock portfolio management application that provides the user with up to date
information on share values retrieved from well known stock information providers. This application
serves primarily as a demonstrator of the concepts of automated, event generated user notification.
The user may define price limits for share values. Whenever such a limit is exceeded at any of the
stock exchanges monitored by the user’s agent, the user will be instantly notified by using the fea-
tures offered by the User Access modules (see WP H: User Access).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 8

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 9

2 Requirements

In this document section we provide a requirement specification of the framework for WP I applica-
tions and the two pilot applications by describing the functionality offered by the system to its exter-
nal actors using Jacobson’s use case models. The use cases detail the scenario description provided
in section 1.2.1.
Figure 8 shows the use case diagram of the whole system for the generic framework of locating and
using services. It consists of seven use cases for the actor user (= information consumer), one use
case for the actor content provider (= information provider) and one use case for the actor service
provider.
Another actor not explicitly modeled in the use cases is the system administrator. The user is offered
to contact the administrator in various situations during interaction with the system. The system
contacts the administrator when specific system events occur (triggers).These issues need to be de-
tailed in the system design documents.

accessSystem

registerAsUser

removeAsUser

manageServices

manageProfile

manageInfoSpace

User

User

manageInformation
Directory

manageService
Directory Service Provider

Information Provider

deliverReport

communicate
about Service

Interfaces

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 10

Figure 8: Use Case Diagram

2.1 Use Cases for the Actor User

In this section we identify the use cases for the actor user.
AccessSystem:
The use case accessSystem is always entered by the user at the beginning of a session and describes
how the user connects to the system. The remaining five use cases related to the user’s interaction
with the system extend this use case as shown in figure 9.

accessSystem

registerAsUser removeAsUser manageServices manageProfile manageInfoSpace

extends

Figure 9: Extensions of the use case accessSystem

The use case accessSystem is started every time a user connects to the system either by accessing a
web-site through a standard web browser via a modem (Netscape or Microsoft browser version 3) or
by running a FollowMe specific software package.
He is then prompted to choose one of the following options (access menu):
- Authenticate and access personalized data. When successfully authenticated, the user may select

one of the following options (main menu): manageServices, manageProfile, manageInfoSpace,
removeAsUser and exitSystem. If one of the first four options is selected, the corresponding use
case is started, otherwise the user exits from the system.

- Register to the system as a new user. This invokes the use case registerAsUser. After being reg-
istered successfully he may select one of the above mentioned options. Otherwise the access
menu is shown again.

- Contact the system administrator (e.g. via e-mail).
- Exit the system.

RegisterAsUser:
The use case registerAsUser describes process of a new user registering to the system. During the
registration process the user must provide user specific data. The use case registerAsUser may be
started by yet unregistered users. When the user enters this use case, the system creates a new ac-
count from a default template and prompts the user for the following data: real name, password,
email address and a system username.
After the user submitted his registration, the system checks if the submitted data is valid (username is
a non-empty string and not in use by another user; format of e-mail address is valid; no password
mismatch and minimum password length) and then saves the now personalized account information.
After this the use case ends.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 11

RemoveAsUser:
The use case removeAsUser describes the process of a user unsubscribing from using the system.
This use case may be entered by a user any time after the use case accessSystem has been started and
the user has successfully authenticated. After entering this use case, the user is prompted whether he
is really sure that he wants to delete his system account.
When the remove command is submitted, the system removes all components associated with the
user and deletes the users system account. After this, the user is notified, that his account was suc-
cessfully removed, the use case ends and the access menu of the use case accessSystem is displayed.

ManageProfile:
The use case manageProfile describes how the user interacts with the system to maintain his per-
sonal data stored with the user’s system account. This use case may be entered by a user any time
after the use case accessSystem has been started, the user has successfully authenticated and the main
menu of accessSystem is displayed.
Within this use case the user may choose from one of the following options (profile menu):
changePassword, manageDiary and exitManageProfile.
To change the password the user needs to enter the old password and the new password and to
submit these changes. After submission, the system checks if the new password is valid and saves
these changes to the personal data. After successfully changing the password, the profile menu is
displayed again.
When the user chooses manageDiary, he may change information specifying when he is reachable
through which device, e.g. ‘on weekends the device to contact the user is a fax with fax-number
111222’. The precise data structure and thus the kind of data to be provided by the user is to be
specified by WP-E: Personal Profiles. After successfully changing these settings, the profile menu is
displayed again.
The option exitManageProfile ends the use case and displays the main menu of the use case ac-
cessSystem.

ManageInfoSpace:
The system offers the user a facility to persistently store data with location transparent access fea-
tures. This storage facility is used to store information delivered to the user by the system’s informa-
tion retrieval services. The use case manageInfoSpace describes how the user may directly access the
contents of this personal information space (see WP A: ‘Architecture’ for general information on
the concepts of information spaces). This use case may be entered by a user any time after the use
case accessSystem has been started, the user has successfully authenticated and the main menu of
accessSystem is displayed.
Within this use case the user may change the contents of his information space or exitManage-
InfoSpace (which ends this use case leading back to the main menu in the use case accessSystem).
The kind of objects that may be changed depends on the characteristics of the specific applica-
tions/services the information relates to. A list of objects that can be changed or deleted is displayed.
The user selects the objects to change/delete and submits his request. After an additional confirma-
tion (including a cancel option that leads back to the object list) the system makes the requested
changes and the list of objects is displayed again.

ManageServices:

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 12

The use case manageServices deals with general issues about accessing services in the WP I applica-
tion framework. It is extended as shown in figure 10.

manageServices

subscribeService unsubscribeService maintainService

extends

Figure 10: Extension of use case manageServices

The use case manageServices may be entered by a user any time after the use case accessSystem has
been started, the user has successfully authenticated and the main menu of accessSystem is displayed.
Within this use case the system displays the list of services the user is currently subscribed to. The
user may choose from the following options (services menu): subscribeService, unsubscribeService,
maintainService and exitManageServices, each of them leading into a new use case as shown in fig-
ure 10.

SubscribeService:
One of the processes dealing with the management of services is to subscribe to a service. This proc-
ess is described in the use case subscribeService. This use case may be entered by a user any time
after the use case manageServices has been entered.
Within this use case the system displays a list of currently available services which the user did not
already subscribe to and an exitSubscribeServices option that leads back to the services menu of the
use case manageServices. One entry in the list consists of a service name and a textual description of
the features of the service. Initially the list will consist of two entries: stock portfolio manager and
regional event notification (the two intended pilots). The user may select one service at a time. The
system then displays a more detailed service description and prompts for a confirmation of the sub-
scription process (here cancel leads back to the list of services). After confirmation by the user, the
system will register the user as subscribed to that specific service. Application/domain specific details
on the subscription process will be discussed in further sections. After successful subscription, the
new service is added to the list of services in use (see below), the user gets notified about the suc-
cessful operation and is linked back to the list of available services (in which the just selected service
is now no longer displayed since the user already subscribed to it). If subscription failed, the user
gets informed about this and is linked back to the list of available services. The new service can be
accessed from the services menu in use case manageServices by choosing maintainService.

UnsubscribeService:
The use case unsubscribeService describes the process of unsubscribing from a specific service. This
use case may be entered by a user any time after the use case manageServices has been entered
Within this use case the system displays the list of services in use and an exit-UnsubscribeServices
option that leads back to the services menu in the use case manageServices. The user may select one
service at a time. The system then prompts for a confirmation to unsubscribe from the respective

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 13

service (cancel leads back to the list of services in use). The user gets notified about the success of
this process and is linked back to the list of services in use.

MaintainService:
The use case maintainService outlines the general options the user is offered to maintain one of the
services he did subscribe to. However, most of the options are domain specific and will be described
in more detail for both pilots separately. This use case may be entered from use case manageServices
by selecting a specific service from a list of services already in use. This leads to another option menu
(maintainService menu) offering the following: setTaskParameters/useService, scheduleReporting,
immediateReporting, maintainServiceInfoSpace, and exitMaintainService.
The option setTaskParameters/useService is very domain specific. Details for both pilots will be de-
scribed in later sections. Basically the user gets displayed a form that allows him to change parame-
ters that customize the respective service to the user’s individual needs. The parameters might define
specific data queries or set triggers for actions to be executed under certain circumstances. An exit-
SetTaskParameters option leads back to the maintainService menu.
The option scheduleReporting enables the user to specify when the respective service should deliver
reports to the user. The data structure and thus the kind of scheduling information to be provided by
the user is to be decided by WP-E: Profiles. An exitScheduleReporting option leads back to the
maintainService menu.
The option immediateReporting instructs the system to deliver an immediate, unscheduled report to
the user (addressed to the device, the user is currently using). The system checks through which de-
vice the user is connected and sends a report to this device - containing the most actual data avail-
able. After requesting the immediate report, the user is linked back to the maintainService menu.
The option maintainServiceInfoSpace is again domain specific. Details for both pilots will be de-
scribed in later sections. Basically the user may access domain specific data stored in the persistent
storage facility (information space) and manipulate its contents (e.g. delete outdated data). An exit-
MaintainServiceInfoSpace option leads back to the maintainService menu.

DeliverReport:
The use case deliverReport describes how services deliver reports to the user. Report contain data
composed of information the services have gathered and filtered on behalf of the user. Reports in
general are sent to specific devices as specified in the user’s diary (see use case manageProfile).
There are two different kinds of reports: regular, scheduled reports and event triggered reports. The
system behavior in this use case is domain specific and will be described for both pilots separately.

2.2 Domain specific Use Cases for the Actor User

Here we describe the domain specific aspects of above use cases.

2.2.1 Stock Portfolio Management System

The stock portfolio management system provides the user with an service aiding in managing a stock
portfolio. The service persistently stores information on the user’s shares and cash account as well as
a history of all transactions between stock depot and cash account. Share values are constantly up-
dated by querying stock information providers. The user may define upper and lower limits for the

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 14

values of his shares. Whenever such a limit is exceeded, the system will generate an immediate report
and send it to the user.
In the following section we describe the domain specific aspects of the use case maintainService
within the use case manageServices. The option setTaskParameters/useService in the use case
maintainService is extended as shown in figure 11.

setTaskParameters/
useService

buyStocks sellStocks viewPortfolio

extends

setLimits manageCash-
Account

Figure 11: Extension of setTaskParameters/useService in the stock domain

BuyStocks:
The use case buyStocks outlines the process of buying new shares. Within this use case the user is
prompted to enter a company name. The system then computes a list of ticker symbols that might
match the user specified company name. This list is presented to the user. Each entry in the list con-
sists of a full name for the found stock entry, a ticker symbol, the name of the service provider the
information was retrieved from and the stock exchange at which the stock identified by the ticker
symbol is traded. The user selects one or more entries from the list to specify from which information
source he wants his agent to retrieve stock quotes. The user must select one of the sources as mas-
tersource (see use case viewPortfolio for details). Next, the user is prompted to enter more details on
the buying transaction: price per share, date of purchase, amount of shares bought. Then the use case
setLimits is entered. In addition, the user may enter costs for transaction fees. The system then com-
putes the overall costs of the purchase and subtracts the money from the cash account. If there is not
enough money in the cash account, the transaction is canceled and the user gets informed about the
failure including an option to update the cash account by adding some money (see manageCashAc-
count for details). Note that buying shares from the same stock at different days or at different prices
results in keeping two different entries in the portfolio. After completion of the transaction the user is
prompted to either specify another transaction by entering a new company name or to go back to
setTaskParameters/useService options.

SellStocks:
The use case sellStocks outlines the process of selling shares. Within this use case the user is dis-
played the lists of positions currently held in his portfolio. Each position is displayed only once (not
multiple times due to multiple data sources for the same position). The user selects the position to be
sold and is prompted for details about the transaction: date of selling, price at which the shares
where sold, amount of shares sold and transaction fees. The system then computes the overall costs
of the transaction and adds the result to the cash account. If an entire position was sold, the entire
position is deleted from the portfolio. If only a fraction was sold, the position is kept in the portfolio,
but the amount of shares bought/held is reduced to the remaining fraction of the position. After
completion of the transaction the user is prompted to either specify another transaction by selecting
a new position to be sold or to go back to setTaskParameters/useService-Functions.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 15

The use case viewPortfolio outlines the process of a user viewing the contents of his portfolio. This
use case is almost identical to what the user gets delivered, when he scheduled reporting according
to the general description of the processes scheduleReporting or immediateReporting. When enter-
ing viewPortfolio the user gets displayed the actual content of his portfolio, an option to set limits to
specific portfolio entries (see setLimits) and an exitViewPortfolio option, which leads back to the
maintainService menu. The user may choose from different views: view all entries including multiple
listings for one position according to multiple data sources; view only one entry per portfolio posi-
tion using the most up-to-date value; view only one entry per portfolio position using the master-
source as defined during the purchase phase. The portfolio will be displayed in a table. Each entry
will consist of the following information: company name, ticker symbol, source of value (information
provider), source of value (stock exchange), number of shares, purchase price and date, actual value
with date and timestamp, up and down limits, gain/loss per position (absolute and percentage). In
addition the overall values of the portfolio are displayed (value of all stocks at purchase time, actual
value of all stocks, overall gain/loss (absolute and percentage). The initial amount of money in the
cash account (see cashstart in the process manageCashAccount), the actual overall value of stocks
and cash account and the gain/loss (absolute and percentage) computed from the latter are displayed.

SetLimits:
The use case setLimits outlines the process of defining limits for share values. This use case is always
automatically invoked, when the user purchases a new stock (see above) or when a previously set
limit was exceeded (see use case deliverReport below), and can be manually invoked by selecting a
specific entry while viewing the portfolio. The user may then set high and low limits to a selected
position. When finished, the user is linked back to the previous menu depending on the context in
which setLimits was invoked (new purchase or viewing the portfolio).

ManageCashAccount:
The use case manageCashAccount outlines how a user may maintain his cash account. This use case
offers the user the following options: viewHistory, add/withdrawMoney and exitManageCashAc-
count (leading up one level in the options hierarchy). The option : viewHistory lets the user scroll
through the listing of the cash account history file. An entry in the history describes a single transac-
tion and consists of the values of cashstart (the amount of money the user did put into the cash ac-
count), cashnow (that is cashstart minus the money invested by purchasing stocks, paying transac-
tion fees and fees for maintaining the cash account plus revenues from selling stocks), a transaction
type (which might be: add/withdraw money, cash account maintenance costs, fee for stock purchase,
fee for stock selling, purchase of stocks or selling of stocks), a description for the transaction (i.e.
100 IBM sold at 52.80) and the overall value of the transaction. The user may define different views
on the history (i.e. show only transactions of a specific type). Quitting the viewHistory process leads
back to manageCashAccount.
The add/withdrawMoney option allows the user to add or withdraw money from the cash account
(which changes the value of cashstart) or pay fees for maintenance (which changes the value of
cashnow).

DeliverReport:
The use case deliverReport for the domain Stock Portfolio Management describes how the system
delivers reports to the user. Reports in general are sent to specific devices as specified in the user’s

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 16

diary. There are two different kinds of reports: regular, scheduled reports and event triggered re-
ports.
Scheduled reports are sent to the user at regular intervals according to the parameters the user
specified for the stock portfolio service (see use case manageServices – option maintainService –
option scheduleReporting). These reports provide the user with a standard overview of his portfolio.
This standard view is described in the viewPortfolio option in the use case manageServices.
Event triggered reports in the stock domain are created whenever a stock limit (see setLimits in use
case manageServices) is exceeded. This kind of report consists of a short notification about the re-
spective event.
Since some devices do not provide direct interaction with the user, there is no way of determining
whether a report was received by the user. Thus the system will keep copies of all reports sent to the
user in the user’s persistent storage facility (information space) until the user manually deletes them
(see maitainServiceInfoSpace in use case manageServices).

2.2.2 Regional Event Notification System

The Regional Event Notification System (RENS) will provide users of the Bavaria Online Network
with information about upcoming events. A large variety of events will be supported by the RENS:
e.g. festivals, movies shown in cinema, or language courses. A detailed definition of events is given
below. Content providers will put information about these events into their data bases. The user can
specify a query to get notified about events. The query is matched against the events in the data
bases of several information providers. A query may specify the type of the event, the time period
and a region in which the event must take place. Queries may be executed once or may be repeated
on a certain schedule. The service looks for all content providers that provide events for the specified
region, queries them, collects the results and forwards them to the user, either offline (e.g. by fax) or
on-line in the session of the user.

Definitions
An Event is an organized meeting, limited in time and content. It means in the original sense festivi-
ties, festivals, balls, concerts, markets, exhibitions, readings, performances, assemblies, sittings and
meetings, but also in the broader sense teaching courses of e.g. adult colleges or the red cross, pro-
grams of cinemas and theatres, holidays- and recreational programs, special exhibitions of museums
and art galleries, days of open doors, advertisement of shop openings, special dinners and public
elections.
An Event is described by a hierarchy of types, a title, an organizer, and a description (what?), its time
(when?), and its location (where?).
A query (in the context of this service) is a characterisation of the type of the event, the time interval,
the region and the reporting schedule.
In the following section we describe the domain specific aspects of the option maintainService
within the use case manageServices. The use case maintainService is separated into a set of sub-use
cases (see figure 12). Please note that this structure deviates slightly from the generic case, because
the scheduled reporting is handled slightly different.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 17

maintain-
Service

maintainServiceIn-
formationsSpaceimmediate-

Reporting
scheduled-
Reporting

setTask-
Parameters

defineNew-
Query

maintain-
Query

DeliverReport

deleteQuery

Figure 12: Extensions of the use case maintainService for the event notification domain

MaintainService:
Within the use case maintainService (consists of setTaskParameters, immediateReporting, sched-
uledReporting, deliverReport, and maintainServiceInformationspace) for the domain of RENS, the
system presents a list of already defined queries to the user. Each query has assigned a name that can
be freely chosen. The service allows the user to choose either to define a new query (define-
NewQuery), to exit or to choose from the following options for each of the defined queries: man-
ageQuery, maintainServiceInformationSpace, or to select several queries and to delete them (de-
leteQuery).

DefineNewQuery:
When selecting defineNewQuery, the user is prompted for a description of a query. The user gives
the name of the query, and its details (what, when, where) and optionally the reporting schedule. The
data is checked for consistency and the query is added to the list of defined queries. After finalizing
the definition the user will return to maintainService.

MaintainQuery:
The use case maintainQuery coincides mainly with the use case defineNewQuery. But all the fields
are already preset according to the selected query. The user may choose to change the details of the
query, including its name. If the user changes the name of the query, it will be stored as a copy and
handled according to defineNewQuery. If the name is unchanged the query will be updated by the
new data.

ImmediateReporting:
When the user triggers the use case immediateReporting, the system will immediately start to look
for events and will create a report to be deposited in the user’s persistent storage facility.

ScheduledReporting:
If the use case scheduledReporting is performed for a specific query, the system schedules the exe-
cution of the query. Each time the query is executed a report is generated and sent to the end user.

DeleteQuery:

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 18

During the use case deleteQuery, all marked queries will be deleted from the list of queries after an
confirmation.

DeliverReport:
The use case deliverReport is entered every time a scheduled query was executed and a report was
generated. Within this use case, the respective report is delivered to the user. The way of delivery
depends on the entries in the user’s diary.

MaintainServiceInfomationSpace:
Within the use case maintainServiceInfomationSpace the user can select a number of available re-
ports related to a selected query. The events contained in the reports are presented. The user can
request different sortings of this list (chronological (which is the default), by type, by municipality).
The user can also request the deletion of a set of reports.

2.3 Use Cases for the Actors Information and Service
Providers

In this section we describe the roles of the actors service providers and information providers.
Within the project, we see two different levels of issues dealing with these actors:
1. Within the project we implement two example services: a Stock Portfolio Management and an

Event Notification System. The process of implementing and advertising these services is part of
the system development and not part of the system as an application. From this point of view, the
development and deployment of new services is not a feature of the system as an application.
Moreover, the participants in these pilot applications are predefined and fixed. Any changes to
system functionality (i.e. service upgrades, changes to interface specifications, deployment of in-
terfaces at new information provider sites) can be viewed as new system releases. Change man-
agement in that sense is not a feature of the system itself. The system functionality required for
participation of service providers and information providers is then reduced to the following
features:
- Information providers:

- IPs need an easy to use interface to maintain their database contents. This is domain spe-
cific and needs to be addressed for each pilot separately.

- Service providers:
- Both pilot services will be implemented and maintained by FAST. Nevertheless the sys-

tem should provide facilities to automatically update all instances of services whenever
we decide to expand data structures or service functionality.

2. Besides just implementing these two example services, the aim of WP-I (and the project in gen-
eral) must be to provide a system architecture that is truly scalable. With respect to service pro-
viders and information providers scalability includes providing certain change management fea-
tures, that allow third parties to develop their own services and allow information providers to
enhance their interfaces to provide extended data structures. The system functionality required
for these features is as follows:
- Information providers (IPs):

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 19

- To enable new IPs to join the system, the system needs to provide a facility to advertise a
new IP site in the information provider directory. This includes:
- Information provider name
- Interface definition
- A reference to the location of the IP site

- IPs need a system facility to interact with SPs about requested changes to service inter-
face definitions.

- IPs need a system facility to maintain the data contents they provide.
- Service providers (SPs):

- To enable third parties to develop and maintain services that conform to our system ar-
chitecture, the system needs to provide a service development kit.

- SPs need a system facility to advertise their services in a service provider directory in-
cluding:
- Service name and human readable service description
- A reference to the location of the service

- SPs need a system facility to define service interfaces and make them available to poten-
tial information providers or assist them in deploying the interfaces.

- SPs need a system facility to interact with IPs about requested changes to service inter-
face definitions.

- SPs need a system facility to automatically update the (distributed) components of their
services.

 Details on requirements for the second and more general view on the system are outside the scope of
the current project phase (which is to implement a first version of a working system and deploy it at
Bavaria Online nodes). Nevertheless the above stated requirements should be kept in mind by devel-
opers of autonomous agents and service interaction. Integrating these change management features
into the system should be approached after the more static view described above has been success-
fully implemented.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 20

 3 Architectural Design: Use Case Analysis

 In this document section we start with the architectural design by mapping the use case models de-
veloped in the previous section onto the agent-based system components developed in the underlying
technical workpackages of FollowMe. The architectural design serves as input for the design work
of the workpackages providing the technologies required to built the pilot applications (namely WP
D, E, F and H). The component interaction models described in the use cases and the event flow
models described in the sequence charts in the next document section are subject to changes due to
the design decisions that will be made in the technical workpackages. Detailed design of the pilot
applications will start after all technical workpackages delivered their design documents and interface
specifications.

 3.1 System Component Model

 Figure 13 provides a basic view on the system components and their relationships. As outlined in the
previous document sections, workpackage I provides user customizable services for information
retrieval. The user locates these services via his personal assistant (PA), which holds information
specific to the individual user in a personal profile (e.g. user name, e-mail address, fax and phone
number and the user’s diary). The PA locates available services via a service provider directory
service. The services themselves are represented by task agents (TAs). The user provides these
agents with parameters specifying when to deliver which kind of information. These parameters are
stored in task agent profiles. Each TA is specialized in retrieving domain specific, well structured
information from information provider sites. The interfaces between the legacy database systems of
the information providers and the TAs are represented by service interfaces. Every time a TA exe-
cutes a query for information based on a user defined schedule, it locates available information pro-
vider service interfaces by contacting an information provider directory service. Profile data as well
as information retrieved by the TAs is persistently stored in the user’s information space (see work-
package C). The user interacts with his PA and TAs via device gateways provided by the user access
(see workpackage H).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 21

User Access
Component Personal Assistant

Component
Service Provider

Directory

Task Agent
Component

Information Space

Information Provider
Directory

Service Interface

user interaction

user interaction

store data

sto
re

da
ta

coordinate
actions

lookup services

lookup information
providers

retrieve information

 Figure 13: System Components

 User Access Component, Personal Assistant Component and Task Agent Component are decom-
posed in according to Figure 14, Figure 15 and Figure 16.

User Access
Device Gateway Connection

 Figure 14: User Access Components

 A more detailed design of the User Access module and how it connects to the PA and TA compo-
nents can be reviewed in WP H: Design (deliverable DH3).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 22

PA Factory Personal Assistant PA Directory

Personal Profile

User Data TimerDiary

create locate

use

part ofpa
rt o

f part of

 Figure 15: Personal Assistant Components

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 23

TA Factory Task Agent TA Directory

Task Profile

Task Parameter TimerTask Schedule

create locate

use

pa
rt o

f
part ofpart of

 Figure 16: Task Agent Components

 The pilot applications provided by workpackage I are distributed systems. Hosting, maintenance and
administration of components is distributed among various parties as follows:

 1. Service providers:
- advertise their services in a global service provider directory (by providing a service descrip-

tion and a link to a TA factory). This directory will be implemented using the directory and
name trading capabilities of the Mobile Object Workbench (WP B. As more and more serv-
ices are added, the directory could be hierarchically decomposed.

- host TA factories, that allow creation of TAs (representing a software capable of using their
services).

- host an Information Provider Directory (a listing of links to Service Interfaces to Information
Providers to be used by TAs)

- provide Service Interfaces to Information Providers (might be located either at Service Pro-
vider sites or at Information Provider sites)

- offer Information Providers to deploy FollowMe Service Interfaces to enable agents to use
their legacy systems

 2. Information providers:
- host information sources (in form of legacy systems)
- may host service interfaces deployed by service providers (see above)

 3. Parties hosting agents on behalf of users:
- host places (the runtime environment for agents), PAs, TAs, agent profiles and information

spaces on systems that provide permanent online connection and can be trusted by the user
with respect to privacy

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 24

- host User Access components
 4. FollowMe system administrators:

- host PA factories
- host and maintain PA and TA directories

 3.2 Use Cases for the Actor User

 In the following we map the use cases identified in section 2 onto above described system compo-
nents.

 Use Case accessSystem
 The use case accessSystem is started every time a user enters the system by either
loading the place software locally or connecting to a place remotely.
 He is then prompted to choose one of the following options (access menu):
- Enter the name of his personal assistant (PA). In this case, the systems links the

user to his PA. If linking to the PA is successful, the PA prompts the user for his
password (echoed on the screen as asterisks) which is checked in turn by the PA. If
the password is correct, the user may select one of the following options (PA main
menu): manageServices, manageProfile, manageInfoSpace, removeAsUser and
exitSystem. If one of the first four options is selected, the corresponding use case is
started, otherwise the user exits from the system.

- Register to the system as a new user. This invokes the use case registerAsUser.
After being registered successfully he may select one of the above mentioned op-
tions. Otherwise the access menu is shown again.

- Contact the system administrator via e-mail
- Exit the system.

Annotations:
- Whenever the user is online connected to the system, the current online-connection (all parame-

ters required to contact the user – i.e. IP-address,...) need to be stored in the User Profile for
reference by any other component, that may receive a command to contact the user.

The use case registerAsUser outlines how a new user registers to the system by triggering the in-
stantiation of a new personal assistant. Is described as follows:

Use Case registerAsUser
The use case registerAsUser may be started by yet unregistered users. When the user
enters this use case, the system creates a new personal assistant (PA). The PA prompts
the user for the following data: name, password, email address and a name for the PA.
The password must be entered twice to ensure its correctness. It is not echoed on the
screen. Instead, an asterisk is echoed for every character entered.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 25

After entering all data the user may submit his registration or cancel it. The option can-
cel ends the use case and displays the access menu of use case accessSystem.
If the user submits his registration, the system checks if the submitted data is valid
(username is a non-empty string; format of e-mail address is valid; PA name is not al-
ready in use; no password mismatch and minimum password length) and then creates
an initial information space and an initial user profile for the new user. After this the
use case ends.

Annotations:
- A new personal assistant, information space and personal profile is by default created at the

FollowMe place from which the request originated.

 The use case removeAsUser outlines how a user may unsubscribe from using FollowMe services. It
is described as follows:

 Use Case removeAsUser
 The use case removeAsUser may be entered by a user any time after the use case ac-
cessSystem has been started and the user has successfully authenticated. After entering
this use case, the user is prompted whether he is really sure that he wants to delete his
system account.
 If the user cancels the operation, the use case is ended and the PA main menu (see use
case accessSystem) is displayed again.
 If the remove command is submitted, the system removes all components associated
with the user (includes deleting information space, personal assistant, all profiles and
task agents). After this, the user is notified, that his account was successfully removed,
the use case ends and the access menu of the use case accessSystem is displayed.

 The use case manageProfile outlines how the user interacts with the system to maintain his personal
profile. It is described as follows:

 Use Case manageProfile
 The use case manageProfile may be entered by a user any time after the use case ac-
cessSystem has been started, the user has successfully authenticated and the main menu
of accessSystem is displayed.
 Within this use case the user may choose from one of the following options (profile
menu): changePassword, manageDiary and exitManageProfile.
 To change the password the user needs to enter the old password and the new pass-
word (twice) and to submit these changes. After submission, the system checks if the
new password is valid and saves these changes to the profile. After successfully chang-
ing the password, the profile menu is displayed again.
 When the user chooses manageDiary, he may change information specifying when he is
reachable through which device. The data structure and thus the kind of data to be pro-

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 26

vided by the user is to be decided by WP-E: Profiles. After successfully changing the
diary settings, the profile menu is displayed again.
 The option exitManageProfile ends the use case and displays the PA main menu of the
use case accessSystem.

 Annotations:
- Diary data consists of device type, device address (dependent on device type) and a time interval.
- The time interval may be of various types: daily hours, specific days within a week, weekends,...

WP-E specifies how these types can be combined.
- The way the user interacts with the system when managing the diary will be designed in close

cooperation between WP-E and WP-I. Profile contents will be displayed using XSL stylesheets.
User interaction will be implemented using XML/XSL or HTML forms, JavaScript or Java app-
lets.

 The information space serves as a storage facility for persistent data with location transparent access
features. The use case manageInfoSpace outlines how the user may directly access the contents of
his information space. It is described as follows:

 Use Case manageInfoSpace
 The use case manageInfoSpace may be entered by a user any time after the use case
accessSystem has been started, the user has successfully authenticated and the PA main
menu of accessSystem is displayed.
 Within this use case the user may change the contents of his information space or
exitManageInfoSpace (which ends this use case leading back to the PA main menu in
the use case accessSystem). The kind of objects that may be changed depends on char-
acteristics of specific applications/services. A list of objects that can be changed or de-
leted is displayed. The user selects the objects to change/delete and submits his request.
After an additional confirmation (including a cancel option that leads back to the object
list) the system makes the requested changes and the list of objects is displayed again.

 Annotations:
- As far as the intended pilot application (stock portfolio and event notification) are concerned, we

do not see any need to allow the user to directly access the information space. However this
might be required in the context of future applications.

 The use case manageServices deals with general issues about accessing services and is described as
follows:

 Use Case manageServices
 The use case manageServices may be entered by a user any time after the use case ac-
cessSystem has been started, the user has successfully authenticated and the main menu
of accessSystem is displayed.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 27

 Within this use case the system displays the list of services the user is currently sub-
scribed to. The user may choose from the following options (services menu): sub-
scribeService, unsubscribeService, maintainService and exitManageServices.

 The use case subscribeService outlines how a user subscribes to a new service by instantiating the
appropriate task agent. This use case is described as follows:

 Use Case subscribeService
 The use case subscribeService may be entered by a user any time after the use case
manageServices has been entered
 Within this use case the system displays a list of currently available services which the
user did not already subscribe to and an exitSubscribeServices option that leads back to
the services menu of the use case manageServices. One entry in the list consists of a
service name and a textual description of the features of the service. Initially the list will
consist of two entries: stock portfolio manager and regional event notification (the two
intended pilots). The user may select one service at a time. The system then displays a
more detailed service description and prompts for a confirmation of the subscription
process (here cancel leads back to the list of services). After confirmation by the user,
the system will create a new instance of a task agent (TA) representing the new service.
The TA creation is accompanied by some initialization process that includes the creation
of a default TA profile and some changes to the user’s information space. Details on
this are application/domain specific and will be discussed in further sections. After suc-
cessful creation/initialization of the new TA, the new service is added to the list of
services in use (see below), the user gets notified about the successful operation and is
linked back to the list of available services (in which the just selected service is now no
longer displayed since the user already subscribed to it). If TA creation/initialization
fails, the user gets informed about it and is linked back to the list of available services.
The new TA can be accessed from the services menu in use case manageServices by
choosing maintainService.

 The use case unsubscribeService outlines how a user unsubscribes from a specific service. It is de-
scribed as follows:

 Use Case unsubscribeService
 The use case unsubscribeService may be entered by a user any time after the use case
manageServices has been entered
 Within this use case the system displays the list of services in use and an exit-
UnsubscribeServices option that leads back to the services menu in the use case man-
ageServices. The user may select one service at a time. The system then prompts for a
confirmation to unsubscribe from the respective service (cancel leads back to the list of
services in use). After confirmation the system removes/kills the respective TA, the TA
profile and deletes all related entries in the personal profile and all related data in the
information space. The user gets notified about the success of this process and is linked
back to the list of services in use.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 28

 The use case maintainService outlines the general options the user is offered to maintain one of the
services he did subscribe to. However, most of the options are domain specific and will be described
in more detail for both pilots separately. The use case is described as follows:

 Use Case maintainService
 The use case maintainService may be entered from use case manageServices by se-
lecting a specific service from a list of services already in use. leads to another option
menu (maintainService menu) offering the following: setTaskParameters/useService,
scheduleReporting, immediateReporting, maintainServiceInfoSpace, and exitMain-
tainService.
 The option setTaskParameters/useService is very domain specific. Details for both pi-
lots will be described in later sections. Basically the user gets displayed a form that al-
lows him to change parameters that define the mission of the respective TA. The pa-
rameters are stored in the TA profile. The parameters might define specific data que-
ries or set triggers for actions to be executed under certain circumstances. In addition,
the service might offer additional functions not directly dealing with agent instructions.
An exitSetTaskParameters option leads back to the maintainService menu.
 The option scheduleReporting enables the user to specify when the respective service
should deliver reports to the user. This information is stored in the TA profile. The data
structure and thus the kind of scheduling data to be provided by the user is to be de-
cided by WP-E: Profiles. An exitScheduleReporting option leads back to the maintain-
Service menu.
 The option immediateReporting instructs the system (the respective TA) to deliver an
immediate, unscheduled report to the user (addressed to the device, the user is cur-
rently using). The system checks through which device the user is connected and sends
a report to this device - containing the most actual data available. After requesting the
immediate report, the user is linked back to the maintainService menu.
 The option maintainServiceInfoSpace is again domain specific. Details for both pilots
will be described in later sections. Basically the user may access domain specific parts
of his information space and manipulate its contents (i.e. delete outdated data and re-
ports). The amount of data stored in the IS might be limited. When such a limit
reached, the respective service/task agent might prompt the user to delete outdated
data prior to any other changes to the IS (see use case deliverReport for the stock do-
main). An exitMaintainServiceInfoSpace option leads back to the maintainService
menu.

 Annotations:
- The list of services in use needs to be stored in the users personal profile. Immediate report de-

livery is asynchronous in the sense that the system won’t wait for the user getting the report,
reading the report and quitting this action. After requesting the delivery by choosing the immedi-
ateReport option, the user may continue interaction with the system as usual. The system delivers
the report independently of other system activities. The report will be displayed on the users end
device in a separate window.

 The use case deliverReport outlines how reports are delivered to the user. It is described as follows:

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 29

 Use Case deliverReport
 This use case describes how the system delivers reports to the user. Reports in general
are sent to specific devices as specified in the PA Profile. There are two different kinds
of reports: regular, scheduled reports and event triggered reports. The system behavior
in this use case is domain specific and will be described for both pilots separately.

 3.3 Domain specific Use Cases for the Actor User

 The domain specific aspects of above use cases describe the domain related system functionality
rather then the general way in which system components interact. For that reason the following use
case descriptions are only slightly different from the descriptions provided in document section 2.

 3.3.1 Stock Portfolio Management System

 The use case buyStocks outlines the process of buying new shares and is described as follows:

 Use Case buyStocks (domain Stocks)
 Within the use case buyStocks the user is prompted to enter a company name. The sys-
tem then computes a list of ticker symbols that might match the user specified company
name. This list is presented to the user. Each entry in the list consists of a full name for
the found stock entry, a ticker symbol, the name of the service provider the information
was retrieved from and the stock exchange at which the stock identified by the ticker
symbol is traded. The user selects one or more entries from the list to specify from
which information source he wants his agent to retrieve stock quotes. The user must
select one of the sources as mastersource (see use case viewPortfolio for details). Next,
the user is prompted to enter more details on the buying transaction: price per share,
date of purchase, amount of shares bought. Then the use case setLimits is entered. In
addition, the user may enter costs for transaction fees. The system then computes the
overall costs of the purchase and subtracts the money from the cash account. If there is
not enough money in the cash account, the transaction is canceled and the user gets
informed about the failure including an option to update the cash account by adding
some money (see manageCashAccount for details). After all transaction parameters are
validated, the system updates the TA profile and informs the users about the successful
transaction. Note that buying shares from the same stock at different days or at differ-
ent prices results in keeping two different entries in the portfolio. After completion of
the transaction the user is prompted to either specify another transaction by entering a
new company name or to go back to setTaskParameters/useService options.

 The use case sellStocks outlines the process of selling shares and is described as follows:

 Use Case sellStocks (domain Stocks)

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 30

 Within the use case sellStocks the user is displayed the lists of positions currently held
in his portfolio. Each position is displayed only once (not multiple times due to multiple
data sources for the same position). The user selects the position to be sold and is
prompted for details about the transaction: date of selling, price at which the shares
where sold, amount of shares sold and transaction fees. The system then computes the
overall costs of the transaction and adds the result to the cash account. After that, the
system updates the contents of the portfolio by changing the TA profile. If an entire po-
sition was sold, the entire position is deleted from the portfolio. If only a fraction was
sold, the position is kept in the portfolio, but the amount of shares bought/held is re-
duced to the remaining fraction of the position. After completion of the transaction the
user is prompted to either specify another transaction by selecting a new position to be
sold or to go back to setTaskParameters/useService-Functions.

 The use case viewPortfolio outlines the process of a user viewing the contents of his portfolio. It is
described as follows:

 Use Case viewPortfolio (domain Stocks)
 The use case viewPortfolio is almost identical to what the user gets delivered, when he
scheduled reporting according to the general description of the processes scheduleRe-
porting or immediateReporting. When entering viewPortfolio the user gets displayed
the actual content of his portfolio, an option to set limits to specific portfolio entries
(see setLimits) and an exitViewPortfolio option, which leads back to the maintain-
Service menu. The user may choose from different views: view all entries including
multiple listings for one position according to multiple data sources; view only one en-
try per portfolio position using the most up-to-date value; view only one entry per
portfolio position using the mastersource as defined during the purchase phase. The
portfolio will be displayed in a table. Each entry will consist of the following informa-
tion: company name, ticker symbol, source of value (information provider), source of
value (stock exchange), number of shares, purchase price and date, actual value with
date and timestamp, up and down limits, gain/loss per position (absolute and percent-
age). In addition the overall values of the portfolio are displayed (value of all stocks at
purchase time, actual value of all stocks, overall gain/loss (absolute and percentage).
The initial amount of money in the cash account (see cashstart in the process manage-
CashAccount), the actual overall value of stocks and cash account and the gain/loss
(absolute and percentage) computed from the latter are displayed.

 The use case setLimits outlines the process of defining limits for share values and is described as
follows:

 Use Case setLimits (domain Stocks)
 The use case setLimits is always automatically invoked, when the user purchases a new
stock (see above) or when a previously set limit was exceeded (see use case deliverRe-
port below), and can be manually invoked by selecting a specific entry while viewing
the portfolio. The user may then set high and low limits to a selected position. After a
request for confirmation to the new limits, the system writes these changes to the TA

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 31

Profile for further reference (see use case deliverReport. The user is then linked back to
the previous menu depending on the context in which setLimits was invoked (new pur-
chase or viewing the portfolio).

 The use case manageCashAccount outlines how a user may maintain his cash account. It is described
as follows:

 Use Case manageCashAccount (domain Stocks)
 The use case manageCashAccount offers the user the following options: viewHistory,
add/withdrawMoney and exitManageCashAccount (leading up one level in the options
hierarchy). The option : viewHistory lets the user scroll through the listing of the cash
account history file. An entry in the history describes a single transaction and consists
of the values of cashstart (the amount of money the user did put into the cash account),
cashnow (that is cashstart minus the money invested by purchasing stocks, paying
transaction fees and fees for maintaining the cash account plus revenues from selling
stocks), a transaction type (which might be: add/withdraw money, cash account main-
tenance costs, fee for stock purchase, fee for stock selling, purchase of stocks or selling
of stocks), a description for the transaction (i.e. 100 IBM sold at 52.80) and the overall
value of the transaction. The user may define different views on the history (i.e. show
only transactions of a specific type). Details on this will be described in later document
versions. Quitting the viewHistory process leads back to manageCashAccount.
 The add/withdrawMoney option allows the user to add or withdraw money from the
cash account (which changes the value of cashstart) or pay fees for maintenance (which
changes the value of cashnow).

 The use case deliverReport for the domain Stock Portfolio Management is described as follows:

 Use Case deliverReport (domain Stocks)
 This use case describes how the system delivers reports to the user. Reports in general
are sent to specific devices as specified in the PA Profile. There are two different kinds
of reports: regular, scheduled reports and event triggered reports.
 Scheduled reports are sent to the user at regular intervals according to what the user
specified in the TA Profile (see use case manageServices – option maintainService –
option scheduleReporting). These reports provide the user with a standard overview of
his portfolio. This standard view is described in the viewPortfolio option in the use case
manageServices.
 Event triggered reports in the stock domain are created whenever a stock limit (see
setLimits in use case manageServices) is exceeded. This kind of report consists of a
short notification about the respective event. After such a report was created, the limit
rule is flagged to has_already_fired. The rule will then fire no longer until the limit has
been changed by the user. No more report will be sent. Next time the user logs on to
the system and enters the PA main menu (see use case accessSystem), the setLimit pro-
cess (see use case manageServices for the stock domain) will automatically be invoked

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 32

and the user is asked to change the respective limit. After the limit was changed, the
user is linked back to the PA main menu.
 Since some devices do not provide direct interaction with the user, there is no way of
determining whether a report was received by the user. Thus the system will keep cop-
ies of all reports sent to the user in the user’s information space until the user manually
deletes them (see maitainServiceInfoSpace in use case manageServices).
 The amount of reports to be stored in the IS is limited. When the limit is reached the
user is sent a message that prompts him to clean up the IS by deleting outdated reports.
The message is sent a limited number of times along or instead of the usual scheduled
reports. The next time the user logs on to the system for direct interaction, he is directly
prompted to delete old reports. This happens after he authenticated to his PA (see use
case accessSystem). A list of previously sent reports is displayed and the user may se-
lect which one to delete. After the user deleted enough old reports, he is linked back to
the PA main menu.

 Annotations:
- Since all transactions are kept in a history file, a number of additional statistics could be offered

to the user (i.e. gain/loss in a specific period of time,...)
- Selling of fractions of a portfolio position results in:

- changing the purchase information of the position in the portfolio so that it appears as if only
the remaining fraction has been purchased (i.e. before the transaction: bought 100 Siemens at
01/02/97; after selling 30 of these, the portfolio looks like: bought 70 Siemens at 01/02/97)

- keeping all value retrieval information
- Selling of a complete position results in:

- deleting the entire position from the portfolio
- removing all value retrieval information and instructions

- Experts in the domain of stock management told us that integrating features that provide values
for investment funds and option-calls as well as industry related news will increase system ac-
ceptance by potential users. Integration of these kind of information is planed for later software
releases.

 3.3.2 Regional Event Notification System

 The use case maintainService in the domain of regional event notification is defined as follows:

 Use Case maintainService (consists of setTaskParameters, immediateReporting,
scheduledReporting, deliverReport, and maintainServiceInformationspace)
 In this use case maintainService, the user gets the actual list of already defined queries
from the TA profile. Each query has assigned a name that can be freely chosen. This
service allows the user to choose either to define a new query (defineNewQuery), to
exit, for each of the defined queries to choose from the following options: manage-
Query, maintainServiceInformationSpace, or to select several queries and to delete
them (deleteQuery).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 33

 The use case defineNewQuery is defined as follows:

 Use Case defineNewQuery (domain events)
 When selecting defineNewQuery, the user is prompted for a description of a query.
 The user gives the name of the query, and its details (what, when, where) and option-
ally the reporting schedule.
 The data is checked for consistency and the query is added to the list of defined queries.
 After finalizing the definition the user will return to maintainService.

 Annotations:
- A note on navigational design: After the definition a NewQuery, the user can select the options

immediateReporting or scheduledReporting. In both cases the schedule is saved as defined by
the user, although the schedule might either be empty, or there is a schedule, but immediate re-
porting is selected.

 The use case maintainQuery is defined as follows:

 Use Case maintainQuery (domain events)
 maintainQuery coincides mainly with DefineNewQuery. But all the fields are already
preset according to the selected query. The user may choose to change the details of
the query, including its name.
 If the user changes the name of the query, it will be stored as a copy and handled ac-
cording to DefineNewQuery. If the name is unchanged the query will be updated by the
new data.

 The use case immediateReporting is defined as follows:

 Use Case immediateReporting (domain events)
 If the user selects immediate reporting for a query, the task agent will immediately start
to look for events and will create a report to be deposited in the information space.

 The use case scheduledReporting is defined as follows:

 Use Case scheduledReporting (domain events)
 If this use case is performed for a specific query, the TA schedules the execution of the
query. Each time the query is executed a report is generated and sent to the end user.

 The use case deleteQuery is defined as follows:

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 34

 Use Case deleteQuery (domain events)
 When choosing deleteQuery, all marked queries will be deleted from the list of queries
after an confirmation.

 The use case deliverReport is defined as follows:

 Use Case deliverReport (domain events)
 Each time a report is generated, due to the execution of a scheduled query, the report is
delivered to the user. The way of delivery depends on the entries in the personal profile.

 The use case maintainServiceInfomationSpace is defined as follows:

 Use Case maintainServiceInfomationSpace (domain events)
 The user can select from the available reports from a selected query. The events con-
tained in the reports are be presented. The user can request different sortings of this list
(chronological (which is the default), by type, by municipality).
 The user can also request the deletion of a set of reports.

 3.4 Use Cases for the Actors Information and Service
Providers

 As outlined in document section 2.3, the implementation of management features that allow auto-
mated integration of new services and information sources is outside the scope of the current project
phase. Therefore we do not provide an architectural design for these features.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 35

 4 Architectural Design: Event Flow Models

 4.1 Domain-independent event flow

 In this section we describe the system internal event flows according to the use cases identified in
section 2. Threads or grouping of events into processes and related object locking need to be ad-
dressed in the system design phase.
 Figure 17 describes the event flow for the process connectToPA of the use case accessSystem.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 36

Browser UA Component PA PA Profile

request entry page

send entry page

send agentname

getHandle(agentname)

sendHandle(agentname)
request contactUser +

send user location

send loginForm

send loginForm

send loginInfo

send loginInfo

validate login info

send PA main menu

send PA main menu

send choice

send choice next use case

PA Directory

set online flag +
store user location

 Figure 17: Process connectToPA of use case accessSystem

 Annotations:
- Details on how the user obtains a handle to the PA:

- The user connects to a place/user access (UA) by loading a HTML form or applet.
- The user inputs the name of his PA and sends it to the UA. NOTE: the name is NOT a refer-

ence to the PA object!
- The UA needs to contact the PA directory to obtain a reference/object address to the PA.
- With this reference, the UA sends a message to the PA, that invokes a method contactUser

with parameters, that specify the context (authenticationDialog) (NOTE: context informa-
tion is only required, if communication is fully asynchronous!!) and information on where to
contact the user (location[addressOfUA]; devicetype[browser]). The procedures of agents
contacting a user via the UA module is described in greater detail in WP-H: Design (deliver-
able DH3).

- The PA might not in suspended mode stored in the information space. This should be transparent
to the above process and handled by the respective place or information space.

- There might occur several exceptions during the process described above:
- The UA might be unable to contact the PA directory.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 37

- The PA directory might not be able to locate the PA.
- The PA might not respond to the request to contact the user.
- The PA might be unable to send messages to the UA. This might occur any time during the

process.
- The UA might be unable to forward messages to the user. This might occur any time during

the process.
- The authentication might fail due to the fact, that communication between PA and personal

profile fails.
- Note that some of the user’s TAs might have reports or tasks stored, that could not be completed

offline because they require user interaction (see stock domain for an example: when a stock limit
was exceeded, the user must change (or may just have the option to do so) the limit during the
next interactive FollowMe session). This requires that prior to displaying the PA main menu, the
PA must check for tasks stored or scheduled by some TA. Eventually the TAs are invoked auto-
matically to prompt the user for the required interaction (or just notify the user about these
pending tasks). This might be implemented by adding a tag in the PA profile that points to a spe-
cific method of the respective TA. Another possibility is to instruct the PA to ask all TAs (regis-
tered in the PA profile in the list of services in use) for pending tasks.

- After the user authenticated to his PA, the PA stores the current user location in the PA profile.
The flag user_is_online is set. Any request by some agent to retrieve the current location of the
user according to what is stated in the diary is automatically overruled by this tag. The PA then
returns the address of the UA through which the user is connected online instead of what is
stated in the diary.

In all following sequence charts we identify the User with the corresponding User Access Compo-
nent. Transactions like ”request info – get info” will be described as a single method call. All of the
below described processes might fail to complete due to failures in one of the system components or
message passing problems. Exception handling will be addressed in more detail in the system design
phase.

Figure 18 describes the Use Case registerAsUser.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 38

Browser (via UA
Component) PA PA Factory PA Directory InfoSpace

Personal
Profile

request new PA

create PA

send agentname,
name, pw, e-mail

send form

validate input

send PA main menu

register

create InfoSpace
create Personal Profile

with initial values

check if agentname in use

Figure 18: Use Case registerAsUser

Annotations:
- Note that the new PA needs to know how to contact the user. The UA must communicate its

address to the PA factory which in turn needs to hand over this information to the new PA.
- The new PA, information space and profile will be initially instantiated at the place from where

the request to create the PA came from (the place where the respective UA resides).
- There are a number of possible exceptions in this use case:

- The factory might not be reachable
- The instantiation of the new PA might fail
- The PA might be created but the remaining operations of the initialization process might fail.

In that case there must be a mechanism to ensure that the nameless, unregistered agent is
killed

- The agent name the user chooses might be already in use by some other agent. In that case
the PA must prompt the user to choose another name.

- One of the other parameters (user-name, user e-mail, password) might not be valid. In that
case, the user must be prompted to change his input.

 Figure 19 describes the event flow for the use case removeAsUser.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 39

Browser (via UA
Component) PA

Personal
Profile Infospace Task Agent

lookup list of TAs

send kill to all TAs

confirm removal

Cleanup and
kill self

send "done"

delete Profile

delete Infospace

Cleanup and
kill self

 Figure 19: Use Case removeAsUser

 Annotations:
- Above process might be entered after the PA did send the PA main menu to the user and the user

selected the removeAsUser option.

 The event flow for the use case manageProfile is described in the design document of WP-E (deliv-
erable DE3).
 Some issues about handling the diary are still to be discussed:
- One of the major use cases for interaction with the profile is to specify how to reach the user at

which points in time. There need to be mechanisms that allow the user to specify these points in
time in terms of rules like:
- RULE_1: Monday to Friday, 9:00-17:00 -> device=e-mail(hgs@fast.de); else -> de-

vice=fax(++4992004718@followme.fast.de)
- RULE_2: Sunday, 01.03.98 -> device=phone(++4992004755@followme.fast.de)
 An agent having to deliver a report on Sunday, 01.03.98 will request the appropriate device from
the profile. The profile needs to apply above rules in the correct order and with correct priorities
(the device in above example should be the phone).
 The diary object must ensure, that at any given point in time the parameter of where to reach the
user is always well defined.

- The user might define that a specific agent should deliver a specific report at specific points in
time (use case scheduleReporting). To specify which device should be used for delivering reports
should be optional:
- TA 007: deliver report A daily at 18:00

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 40

- TA 008: deliver report B every Friday at 15:00 to device
fax(++4992004718@followme.fast.de)

Figure 20 describes the event flow for the use case subscribeService.

Browser (via UA
Component) PA

Personal
Profile

Service
Directory

Task Agent
Factory

lookup list of
services in use

lookup list of
available services

request form
manageServices

prepare lists

Task Agent InfoSpaceTA Profile

send form
with lists

send selection
get service
description

send description

confirm selection

send "OK"

instantiate TA

create and init profile

create and init objects in InfoSpace

add service to list
of services in use

send updated form
(next use case)

Figure 20: Use case subscribeService

Annotations:
- The ”form with lists” send to the user consists of two lists: the list of services in use, which is

retrieved from the personal profile and the list of available services not yet in use, which is the
list of all available services retrieved from the service directory minus the list of services in use.

- The process of instantiating a TA, initializing a TA profile and creating and storing service related
objects in the information space is described in the design document of WP D (deliverable DD3)
in cooperation with WP C.

Figure 21 describes the event flow for the use case unsubscribeService. The use case can be entered
by the user by highlighting one item in the list of the services in use (which is send to the user during
use case manageServices as described above).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 41

Browser (via UA
Component) PA

Personal
Profile

send selection
and confirm

update lists

Task Agent InfoSpaceTA Profile

send updated
form (next use case)

send kill command

delete TA Profile

cleanup objects
request cleanup of

Personal Profile

update profile

Figure 21: Use case unsubscribeService

Annotations:
- The process of killing a task agent is described in the design document of WP D (deliverable

DD3).
- WP D and WP E define whether TAs have direct access to the personal profile or all changes to

the personal profile are mediated through the PA. Same holds for changes to the information
space (addresses WP C).

- Cleaning up the personal profile includes deleting all task related events scheduled in the diary
and deleting the respective service from the list of services in use.

- Killing a TA includes de-registering at some trader / TA directory. Issues on registering/de-
registering at traders are addressed in the design document of WP B.

Figure 22 describes the event flow for the option scheduleReporting in the use case maintainService.
The use case maintainService can be triggered by the user by highlighting one item from the list of
services in use (see Figure 20) and choosing the option maintainService.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 42

TA

send form

main menu
(next use case)

store schedule

Browser (via UA
Component) TA Profile

submit schedule

Figure 22 : Process scheduleReporting in use case maintainService

4.2 Stock domain specific event flow

Within the stock management pilot application, the task agent will actually consist of two parts:
- A user specific part responsible for dealing with the content of a users portfolio and cash ac-

count.
- A component that is shared among all users on a single host responsible for retrieving stock val-

ues from stock information providers. This component is introduced due to the fact, that stock
information needs to be updated very frequently. Thus it would be a lot of bandwidth overhead if
every single user would retrieve stock values at a high frequency. Instead, users subscribe to the
shared component referred to as value server. The value server consists of the active value
server agent component, the value server profile (storing data about subscribers and information
sources) and a data store facility (to store the share values).

The data structure used to describe an entry in a user’s portfolio consists of the following attributes:

attribute example Values

company name Oracle

ticker symbol ORC

source of values (provider) Yahoo Financial US

source of values (stock exchange) New York Stock Exchange

stock exchange business hours 16:30-22:00 GMT

value provider update times 16:30-22:00 GMT, constantly (= 1 sec.)

delay 15 min

currency US $

last value 152.50

timestamp of last value (GMT) 10.10.1999, 16:15

value at purchase 145.30

timestamp of purchase 01.01.1999, 12:00

amount of shares purchased 200

lower limit 130.00

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 43

attribute example Values

upper limit 165.00

annotations by the user should sell this at $ 165.00, but not before 01.12.

link to related industry news http://biz.yahoo.com/n/o/orcl.html

Figure 23 describes the event flow for the use case buyStocks.

Browser (via UA
Component) TA (User part)

TA (Value-
Server) IP Directory

Proxy Agent
(at IP Service)

IP (Legacy
System)

get list of IPs

send form

send companyname

for each
IP in list:

send companyname

symbol lookup

translate
 to XMLsend symbol lookup

results in XML

compose all results
to XML formsend forms: list of

sources + purchase info
send selcted sources +

purchase info
register to value

service

for all new
sources: get update frequencies +

business hours

get latest values

get latest values

compute
update

schedule

get latest values

store changes
to profile

send next form

send "OK"

store changes
to profile

Figure 23: Use case buyStocks

Annotations:

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 44

- Interaction with the user might continue immediately after he submitted the list of selected
sources and the stock share purchase information. The internal processes of registering to the
value server could be regarded as independent of the ongoing user interaction.

Figure 24 describes the event flow for the use case sellStocks. This use case may be entered by the
user when viewing the portfolio contents. The user highlights a particular stock position and chooses
the option to sell these stocks. If the user sells all stocks within one position, the user component of
the TA needs to unsubscribe from the value server component of the TA. In that case, if the particu-
lar user is the last subscriber to a specific stock value feed, the value server component of the TA
needs to stop serving the values of this particular stock.

Browser (via UA
Component) TA (User part)

TA (Value-
Server)

send form

send companyname
compute changes to

cash account

TA Profile
(User part)

TA Profile
(Value-Server)

get stock position +
cash account details

update
stock + cash details

unsubscribe all
sources of this value

delete entries

send "OK"

send next form

Figure 24: Use case sellStocks

Figure 25 describes the system internal process of retrieving stock values from information provid-
ers.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 45

TA Data
(Value-Server)

IP Legacy
SystemTA (User part) TA (Value-

Server)
TA Profile

(Value-Server)
Proxy Agent

at IP

event: get values

request: get values

get values

send values

check limits
of subscribers

alert: limit exceeded

deliver report
(see below)

set limit
exceeded flag

get update frequency
+ business hours
compute time for

next update
set timer for
next update

update values

Figure 25: Process of stock value retrieval

Annotations:
- The ”limit exceeded” flag is set whenever a limit was exceeded. It deactivates the trigger and

thus prevents the trigger from firing indefinitely. The trigger is reactivated when the user entered
a new limit.

Figure 26 describes the event flow of the use case deliverReport for the stock domain in case the
reporting is triggered by the event of exceeding a user defined stock value limit. It is triggered by a
listener event send by the value server component of the TA. The value server did send an alarm in-
cluding the actual stock value together with other related attributes like the source of the value and
the timestamp for the value. The user did not specify a location defining where the reports should be
sent to. Thus the TA needs to contact the PA to lookup where to send reports according to what is
specified in the diary section of the PA profile.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 46

TA (User part)
TA Profile
(User part)

get stock
position details

request user location

Browser (via UA
Component) PA PA Profile InfoSpace

get user location

send user location

send report

store report
request to add event: on

next logon -> change limit

store event
increment report

counter
request to add event: on

next logon - >delete reports

store event

Figure 26: Use case deliverReport (event triggered)

Annotations:
- Layout information (XSL-files) for reports are part of the TA distribution downloaded from the

respective TA factory and is stored in the information space?
- Once a limit was exceeded, the TA instructs the PA to create an event tag in the PA profile, that

will cause the PA to immediately call the TAs setLimit method when the user logs on to the PA.
- To prevent storing large amounts of outdated reports in the information space, each TA may

only store a limited number N of reports. Any time the TA stores a report in the information
space (for later reference by the user), a report counter is increased. When N reports have been
stored in the information space, the TA stops delivering reports and instructs the PA to create an
event tag in the PA profile, that will cause the PA to immediately call the TAs manageInfoSpace
method when the user logs on to the PA.

Figure 27 describes the event flow of the use case deliverReport for the stock domain in case of a
regular, scheduled report. It is triggered by a diary event stored in the diary section of the TA profile.
The user did not specify a location defining where the reports should be sent to. Thus the TA needs
to contact the PA to lookup where to send reports according to what is specified in the diary section
of the PA profile. When the report is not triggered by schedule but directly by the user (choosing the
immediate reporting option from the TA main menu) the event flow is the same than described in
Figure 27 except that the call to send a report originates from the UA instead of the TA profile. The
process of determining the user location is still the same except that the fact that the user is online
connected overrides the entries in the diary.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 47

TA (User part)
TA Profile
(User part)

event: send report
get portfolio + cash

account details

Browser (via UA
Component) PA PA Profile InfoSpace

get values

request all relevant values

send report

get user location

increment report
counter

TA
(value server)

TA Profile
(value server)

send all relevant values

prepare report

request user location

send user location

store report

Figure 27: Use case deliverReport (scheduled)

The event flow for the use case manageCashAccount is described as follows:
- The user requests to manage the cash account by selecting the respective option in the setTask-

Parameters/useService menu of the TA.
- The TA retrieves all relevant information (cash account transaction history and up to date values)

from the TA profile (or data file).
- The TA prepares a form using some XSL-stylesheet.
- The user may view the history or enter other new transactions (like adding/withdrawing money;

paying fees...). He must specify a transaction- type by choosing from set of available types.
- The user submits the filled out form to the TA.
- The TA checks if all input is valid (using a DTD) and stores the changes to the TA profile.

Issues not covered in detail in the first implementation of the pilots (due to a more static ap-
proach):

- In the stock domain the directory of available information providers (IPs) is not queried on the
fly. For various technical reasons user interaction is required when selecting information sources
(i.e. symbol lookup - this part could be redesigned any time whenever there is a worldwide stan-
dard for ticker symbols). Selecting IPs (information sources) is done by the user during the use
case buyStocks. However, additional IPs might become available anytime. Thus there is a need
for a mechanism that allows stock TAs to check for new IPs every now and then so that they can
inform their users about these new sources. Therefore the TA profile provides a parameter that
specifies the frequency at which the TA will automatically check the IP directory for new IPs (i.e.
once a week). To determine which IPs are new (since the agent last checked the directory), one
of the attributes of an IP-entry in the IP directory service must be the date at which the IP was
advertised in the directory.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 48

- TAs might as well check for changes to interface descriptions of IPs (either changes to attributes
like update frequency or business hours or advertisement of new methods) on a regular sched-
uled basis.

- TAs might check their creators (TA factories) for updates on a regular scheduled basis. When
updates become available, TAs could be automatically updated by recompiling, exchanging code,
linking new classes or extending/exchanging mission profiles.

 4.3 Event notification domain specific event flow

 The basic data structure within the domain of event notification is of type event. An event can be
basically described by:
- Event type (What?)
- Event location (Where?)
- Date of event (When?)
 Investigations in modeling these three aspects showed that they can be of almost arbitrary complex-
ity. To illustrate this, we give a few examples of textual event descriptions:
- Trade fair 19.03.-25.03.1998; 19./20.03. 10-20 h at location A; 21.03.-25.03. 9-19 h at location

B
- English courses June to August at the university; every Friday at 18:00-20:00; not 19.06.; room

numbers to be announced individually one week in advance
- FC Bayern fan club pub meeting at pub XY; all year every 1st Monday of the month at 18:00;

open ended
- Bus schedule for bus station A; workdays 6:00-23:00 every 20 min starting at 6:04; weekends

9:00-18:00 every 30 min starting at 9:04
 Our approach towards handling this complexity is to start with a rather simple model that covers
most but not all types of events. This model is designed to evolve along with the rest of the system
by introducing a versioning concept. Events and task agents (that perform queries on events) will
have an attribute labeled version. Version 1.0 agents will be capable of querying version 1.0 events.
Version 1.1 agents will be capable of querying both version 1.0 and version 1.1 events.

 Data model for events (version 1.0):

 attribute example Values

 event title Programming Agents in Java

 event description FAST-seminar where participants will learn how to
create agents using Java

 event category (up to three levels) Education_Training_Knowledge.Courses.Computer

 start_date, start_time, end_date, end_time 12.03.1998, 14:00, 12.03.1998, 16:30

 location of event (postal address) FAST e.V., Arabellastr. 17, 81925 Munich, Ger-
many

 location of event (geographic location) x = 29,27; y = 28,63

 event organizer (postal address) Mr. Stein, FAST e.V., Arabellastr. 17, 81925 Mu-
nich, Germany, Tel. ++498992004755, Email
hgs@fast.de

 web-link to event (by organizer) http://www.fast.de/seminars/JavaAgents

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 49

 attribute example Values

 target audience anyone interested in Agents and Java programming

 price students: DM 200,- ; standard DM 500,-

 Event title and description are both strings. Their contents are not restricted to specific values.
Agents will not query these attributes. They are intended to serve as additional information for hu-
man readers.
 Event categories are described in up to three levels of detail. As the system evolves more levels
might be introduced. Event categories are typed data attributes that can be queried by agents. Their
values are restricted to predefined value sets. So far, the following categories have been identified by
our partners in the Bavaria Online network:

 First level second level third level
 Formal Education, Training, Knowledge Educational System …
 Fine – Arts Educational System …
 Courses Courses about Languages

 Courses about Health

 Courses about Computer

 Consulting sources …
 Others …
 Art and Culture …
 Sports and Recreation …
 State, Politics, Administration …
 Philosophies and Religions …
 Health and Socials …
 Natural Science and Technology …
 Economy, business, trade, industry, craft …
 Agriculture …
 Others …

 Within version 1.0 of the event data model, events cannot be grouped. There is no way of modeling
meta-structures that, i.e. would group a series of workshops. As far as the workshops have different
topics or take place at different locations and thus need to be individually described, they are treated
as separate, unrelated events.
 Periodicity also cannot be expressed in the version 1.0 model. Periodic events like, i.e. a meeting
every Monday, are modeled as separate events with specific location in time like 'meeting on
09.03.1998’.
 However, the timeline of an event can be split into an arbitrary number of time intervals or sessions.
This is only possible when each session takes place at the same location and separate sessions do not
require separate descriptions. Only events that under normal circumstances require the user to attend
all of the sessions in order to attend the event should be modeled using the session approach. As an
example, a German course with 10 separate sessions could be modeled that way. The event will only
match the user’s query if all of the session dates fit the user’s time constraints. In case of a series of
workshops, where the user could be interested in attending only some of the advertised sessions, the
session model won’t fit. Instead each workshop will be modeled as separate event. The group struc-
ture of the series of workshops is not coded.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 50

 The physical location of an event is coded in two ways. First, it is coded as postal address which
serves as textual information for the user. The postal address consists of the following attributes:
- Address name (i.e. FAST e.V. or Ludwig-Maximilian University Munich)
- Name of department
- Street
- House number
- Floor and room number
- Postal code
- City
- Country
 Second, it is coded using geographical coordinates (longitude and latitude). This is used by the sys-
tem to enable queries like ‘within a radius of 50 km around my current location’.

 The event organizer is coded as a postal address with the following attributes:
- Organization name (i.e. FAST e.V. or Ludwig-Maximilian University Munich)
- Name of department
- Name of contact person (Mr. Stein)
- Street
- House number
- Floor and room number
- Postal code
- City
- Country
- Phone number
- Fax number
- Email address

 An optional web link can be provided to link the user to additional information either on the event or
on the organizer of the event.

 The attribute target audience specifies who could or is allowed to participate in the event.

 The attribute price specifies the costs for participation.

 For technical reasons, two additional attributes will be attached to every event (done by the system
providing the data storage facility for events):
- Name of the organization hosting the event data storage facility (e.g. the name of the Bavaria

Online node)
- Date of last update of the event data entry in the storage facility

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 51

 Above described data structures of type event can are queried by task agents according to a user’s
needs. When defining data queries, the user may specify a title for the query and the following pa-
rameters:
- The user may specify the following parameters to define which events are of interest to him:

- Event category: The user needs to select on or more entries from the list of available catego-
ries. The specified level of detail is up to the user. Examples given below:
- Example 1: Event category: All
- Example 2: Event category: Formal Education, Training, Knowledge.Courses.Courses

about Languages
- Event location: The System will provide a clickable map interface with zoom levels. The user

may pin a location and specify a radius, thus defining the area in which events of interest
should be located. The input is interpreted by the system in form of geo-coordinates (longi-
tude, latitude). The respective interface will be provided by a third party geo information
system. TAs will communicate with this component via Java interfaces.

- Event time: The user specifies a time interval into which events of interest need to fit. The
interval is specified by start and end calendar dates (no daytime). In addition, the user may
provide two kinds of patterns: weekdays and daytime intervals. See the following example:
- Calendar interval: [01.04.98; 31.06.98]
- Weekday pattern: {Monday, Tuesday, Sunday}
- Daytime pattern: [16:00; 18:30]

- The user may specify the following parameters to define when the system should deliver reports:
- A time interval during which reports should be delivered
- A set of weekdays at which reports should be delivered
- The daytime at which reports should be delivered
- The device to which the reports should be sent (optional)

 Unlike in the stock domain, there is no value triggered reporting within the event notification do-
main. Therefore queries need only be executed prior to report delivery. There will be a fixed offset of
two hours between query execution time and report delivery time.

 The user may declare two additional parameters that specify the minimum and maximum time gap
between the execution time of the query and the point in time where the events take place (min-
TimeOffset and maxTimeOffset). These parameters are specified in terms of days. Say, e.g., the
minimum parameter is set to 7 days and the maximum parameter is set to 14 days. Every time the
query is executed according to the user defined schedule, only events will be returned, that are lo-
cated at least 7 days and at most 14 days in the future. These parameters are optional. If they are not
explicitly specified, the minimum parameter is by default zero days and the maximum parameter is by
default set to 365 days.

 The system checks for outdated queries. Whenever either the interval of the reporting schedule or
the interval specifying which events are of interest are outdated, the system will inform the user and
prompt him (on his next interactive session) to either drop the query or specify new intervals.

 Figure 28 describes the event flow for the use cases defineQuery and maintainQuery simultaneously.
Prior to the described process, the TA did look up the titles of the already defined queries in the TA

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 52

profile and display it to the user. The user then did either choose to define a new query or to change
pae pae parameters for an existing query. In the first case, the form sent by the TA is blank or con-
tains default values. In the second case, the TA looks up the currently defined query parameters in
the TA profile and displays them within the form so the user may
 e them.
(Note that when the user changes the parameters of an existing query, the TA must delete the time-
stamps of the last visit to information provider sites. The purpose of this parameter is described in
the process description of executing a query – see
 b

 elow).

�EMBED Visig.

TA

send list of
existing queries

get current settings

Browser (via UA
Component) TA Profile

select query

send form
and applet

submit query
parameters

store query

Geo Information
System

get GIS applet

compute coordinates

 Figure 28: Use cases defineQuery and maintainQuery

 The process of defining a reporting schedule for a single query is identical to what has been de-
scribed for the generic use case scheduleReporting. The use case is entered either automatically after
the user did define a new query or by the user requesting to change the schedule of an existing query.

 To delete a query, the user selects the respective query from the list of existing queries (see above)
and submits his delete request. The TA then deletes the respective entry from the TA profile.

 Figure 29 describes the process of the system executing a scheduled query. This process is triggered
by the timer component of the TA profile according to what the user specified in the reporting
schedule. When the service interaction interface at an information provider site receives a query
statement by the TA, it passes the query to the information provider’s database engine. The database
engine has to match the query parameters against the database entries. This means in detail:
- Matching of event categories.
- Matching of time patterns: Events must fit in the specified time intervals (calendar date and day-

time) and match the pattern for weekdays.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 53

- Matching of parameters minTimeOffset and maxTimeOffset (see above) relative to the execution
time of the query.

- Matching of geographical location: The database must compute the distance between the loca-
tion of the event and the location specified in the query. The distance may not exceed the dis-
tance specified in the query.

- Matching of last update times: The TA provides the date if its last visit of the respective informa-
tion provider site in the context of a specific query (lastVisit parameter). The timestamp of the
last update of an event entry in the data base needs to be dated after the date of the last visit. This
mechanisms ensures that events are not queried twice (unless there was an update to the database
entry).

TA TA Profile
Service Interface/

Event DB
event: execute query

send XML-list of matches

send query

get lastVisit

update lastVisit

get links to IPs

IP Directory

get query
parameters

for each
IP in list

compute list
of matches

in XML format

compose results
and deliver report

Figure 29: Event flow of query execution

Delivery of reports is very similar to what is stated for the stock domain. When the user did not ex-
plicitly specify a device, the appropriate device is looked up in the PA profile. The report is sent to
the respective device and stored in the user’s information space. The report counter (see stock do-
main) is incremented.

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 54

5. Deployment of System Components

Deployment of system components is organized in close cooperation with our partners in the
Bavaria Online network. For deployment and evaluation of the first prototype of the applications,
we identified five Bavaria Online nodes that committed to actively participate. Contact to techni-
cians running the nodes was successfully established. The nodes are all located in close geographical
locations which is of significant importance with respect to the event notification system (people
might not be interested in events to far from their hometown). The nodes are located at the following
towns:

- Schwindegg (project contact point)
- Muehldorf
- Landshut
- Ebersberg
- Weihenstephan

During system development, all components will be hosted by FAST. Hosts at FAST will be set up to
emulate the role of the Bavaria Online nodes. Once first versions of the system are up and running,
the respective components will be moved to the selected Bavaria Online nodes. In detail, compo-
nents will be distributed as follows:
- In the stock domain, information providers will be well known stock information providers like

Yahoo US, Yahoo Germany and some other German providers. Content from these sites is pro-
vided either in HTML or in ASCII format. Service interaction interfaces to these sites will be
hosted by FAST. Agents acting on behalf of their users and residing on Bavaria Online nodes
will query these interfaces to retrieve information.

- In the event notification domain information is provided by local event organizers (i.e. cinemas,
schools, etc.). They communicate their event advertisements to the Bavaria Online nodes by
means defined by the individual Bavaria Online nodes themselves. Basically, Bavaria Online
programmers will develop a front end tool that assists information providers in inserting their
data into a data storage facility hosted by the Bavaria Online nodes. The data storage facility
may either be a standard SQL-based database (for those nodes that already have such a system in
use) or a system of XML-files (for those nodes that do not have any database in use). In the first
case there will be a mapping of the contents of the SQL database to a system of XML-files.
Service interaction interfaces that offer FollowMe agents access to the event data stored in
XML-files will be hosted by the Bavaria Online nodes. In addition, Bavaria Online program-
mers will provide mechanisms that allow the creation of event listings in file formats like MS
Word or HTML for use with other applications like newsletters or web forms (see Figure 30 and
Figure 31).

ID: WP_I_Req&ArcDesign ESPRIT Project N. 25 338 - FollowMe

18.05.99 Work package I page 55

- All user specific components will be hosted by the Bavaria Online nodes (e.g. personal assis-
tants, task agents, information spaces, agent profiles, user access modules).

- FAST will be in the role of the service providers. All related components (e.g. the service direc-
tory, information provider directories, TA factories) will be hosted by FAST.

- FAST will host the third party geo information system required for the event notification system
as described in 3.2.2.

- PA factories and information space factories are part of any FollowMe place and thus will be
available at any Bavaria Online node.

- For locating a user’s PA, we implement a global PA directory located either at FAST or at one of
the Bavaria Online nodes.

Tool for Data Input
by Information

Providers

Word-Document HTML-Document

Bavaria Online
SQL DB

FollowMe
XML-files

Service Interaction

Data Mapping

Data Input

Dynamic Document Creation

FollowMe Agents

Figure 30: Event notification data storage with SQL DB

Tool for Data Input
by Information

Providers

Word-Document HTML-Document

FollowMe
XML-files

Service Interaction

Data Input

Dynamic Document Creation
FollowMe Agents

Figure 31: Event notification data storage without SQL DB

