
ESPRIT Project No. 25 338

Work package G

Service Deployment

Design

ID: WP G – Design V. 1.1 Date: 28.04.1998

Author(s): L. Amsaleg, M. Billot, P. Couderc,
V. Issarny, A.-M. Kermarrec, M. Le
Nouy, J.-P. Routeau

Status: Draft

Reviewer(s): E. Triep Distribution: Deliverable





Change History

Document Code Change Description Author Date

WPG Design V1.0 First version of document. No changes. INRIA
TCM.

23.03.98

WPG Design V1.1 Incorporation of the internal review sug-
gestions

INRIA
TCM.

28.04.98



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page i

1 INTRODUCTION 1

2 REQUIREMENTS 2

2.1 Overview 2

2.2 Monitoring Tools 3

2.3 Load-Balancing Policy 4

3 A SHORT SURVEY 5

3.1 What to Monitor, How and When to Measure? 5

3.2 A Short Overview of Existing Performance Monitoring Tools 6
3.2.1 Monitoring Machines 6
3.2.2 Monitoring the Network 7

3.3 Data Mining Techniques 8
3.3.1 Mining Association Rules 9
3.3.2 Multi-Level Data Generalization, Summarization and Characterization 9
3.3.3 Data Classification 10
3.3.4 Data Clustering 10
3.3.5 Pattern-Based Similarity Search 10

4 DESIGN 11

4.1 Overview 11
4.1.1 Class Diagram 11

4.2 Use of Histories 12
4.2.1 Filters 13
4.2.2 Request and Notification 13

4.3 API 16
4.3.1 Class Hierarchy 16
4.3.2 Class ServiceDeployment.Monitor 16
4.3.3 Class ServiceDeployment.basicMeasurement 17
4.3.4 Class ServiceDeployment.View 18
4.3.5 Class ServiceDeployment.Test 19
4.3.6 Class ServiceDeployment.History 20

5 USE-CASES 22

5.1 Exploiting Performance Monitoring to Balance Computation and Communication Costs 22

5.2 Mining User Profile to Group Users on Servers 23

6 STATUS 24

7 REFERENCES 25



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 1

1 Introduction

The architecture of FollowMe raises new issues related to distributed services. New opportunities
are based on agent technology which provides mobile code. In work package G, we are investigat-
ing some methods for taking advantage of these new opportunities in order to provide load-
balancing tools. Our intention is not to cover the wide spectrum of load-balancing tools. Rather, we
focus on a set of tools that could help the deployment of a large scale, widely distributed application
over th FollowMe infrastructure. For example, we consider the deployment of Etel++ over the ar-
chitecture of FollowMe. This application, described in [DJ2] includes distributed computing, exten-
sive usage of storage and large data transfer. Therefore, it requires efficient load-balancing policies
relying on accurate monitoring tools.

The main goals of work package G are therefore as follows:

• Allowing applications to monitor the performance of hosts. As an example, this monitoring may
deliver numbers reflecting the resource consumption of an agent or the available bandwidth
between two hosts. Monitoring tools should also provide a convenient way to extract useful in-
formation of the large amount of numbers the monitors deliver. These tools exhibit tendencies,
meaningful numbers (average, deviation, mean-square…) and also predictive values.

• Implementing a specific load-balancing policy dedicated to Etel++. This policy is based on both
monitoring tools an data mining techniques.

Section 2 provides a brief overview of the requirements of work package G. Section 3 summarizes
the state of the art concerning the resource monitoring and data mining which both appear as key
features for improvement of load-balancing in FollowMe. Section 4 describes the proposed design.
Section 5 describes some use cases relevant to ETEL++ deployment. Finally, Section 6 proposes a
short status of work package G and the ongoing work.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 2

2 Requirements

We provide in this section a short description of requirements for work package G. Section 2.1
gives an overview of these requirements. Section 2.2 describes the purposes of monitoring tools.
Section 2.3 describes the key features of load-balancing policy.

2.1 Overview

Work package G can be viewed as a toolbox that may help high-level applications to take perform-
ance-related decisions, such as determining a good way to balance the load they impose on the sys-
tem. In a nutshell, this work package providesmechanismsfor evaluating the usage of resources,
that is, it provides a set of monitoring tools. Application may use these tools to enforce apolicy
achieving a particular goal, load balancing being a possibility. This separation between mechanisms
(that are part of this work package) and the policies (that are part of other work packages) is impor-
tant. Therefore, the tools described here have to be generic enough for being possibly used in differ-
ent contexts and for being included in various policies.

While having general-purpose tools is a requirement, it should be apparent that each policy assem-
bles some of these tools in a very specific way. Therefore, two policies are likely to be made of dif-
ferent tools belonging to this work package, and furthermore, each may use the tools differently. In
general, a policy that uses the tools of this work package can be conceptually split in three major
parts: (i) the tools themselves, (ii) a list of requirements that the policy has to enforce and (iii) an
“engine” that uses the data returned by the tools to actually enforce the requirements.

The purpose of this document is to present two of the three parts mentioned above, namely the tools
themselves and a way to use these tools to enforce a specific policy. This policy is dedicated to
ETEL++, and has been designed to enforce the Quality of Service requirements of this pilot appli-
cation. (Note that INRIA is responsible for both this work package and the pilot application 2.)



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 3

Exploits

Implements

Describes

Creates

n

nMonitoring
tools

Etel++

Resources

Profile

User

User
profile

Resource
profile

Load-balancing
policy

Describes

Figure 1 : Load-balancing tools

The Figure 1 helps in getting a global view of what this work package is made of. The three parts
mentioned above are represented. The first part – the tools themselves— can conceptually be
viewed as profiles describing the usage of resources, this usage being maintained by the monitoring
tools. Profiles may for example describe the availability of resources in terms of percentage of free
disk space, CPU load or Network bandwidth. The second part –the list of constraints to eventually
enforce—can be conceptually viewed as a user profile. A constraint may for example be that the
user needs to browse his personalized newspaper every day around 9am. Finally, the third part ex-
ploits both the resources profiles and the user profiles to devise an appropriate behavior enforcing
the constraints. A possible behavior may for example be building the personalized newspaper over-
night, then shipping it to a computer close to the location of the user a couple of hours before 9am.

This work package provides a convenient notion of resource profile and also a way to exploit the
profile concept within a load-balancing policy dedicated to ETEL++. The proposed architecture of
the work package G is therefore based on two levels:

• The monitoring tools and extraction tools which implement the concept of resource profile.
These tools rely on measurement, target, history and filters, where filters provide a convenient
way to extract well-adapted resource profiles. Main requirements of these tools are described
hereafter (see section 2.2).

• A load-balancing policy based on the proposed monitoring tools and data-mining techniques.
Since the design of ETEL++ is on going, we do not detail the corresponding load-balancing
policy. This policy will be detailed in document DJ3 (Design of ETEL++). However, we pro-
vide some basic use-cases.

2.2 Monitoring Tools

Monitoring should typically reflect the utilization of CPU, disk, memory and network. The utiliza-
tion of a resource such as a disk is described by means of a basic measurement reflecting for exam-
ple the used storage space. These measurements are also attached to the notion of cluster (see



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 4

documents [DB3] and [DB4]), that is, the measurement may reflect the utilization of storage space
of a cluster or a set of clusters. Therefore, we intend to provide the monitoring of hardware re-
sources for various FollowMe targets like a host, a cluster or a set of clusters.

Applications also rely on more complex measurements. An application monitoring the bandwidth
available on the network of a given host has to collect measurements of bandwidth available
through various paths. These basic measurements can be compiled in a complex measurement re-
flecting more accurately the bandwidth of a given host. Work package G has therefore to provide a
notion of aggregate of basic measurements.

In order to obtain trusted values, we also need to proceed with the compilation of successive values.
These measurements are stored in a history. Dealing with the large number of values stored in a
history is a difficult task based on the detection of representative values and tendencies. The com-
putation of such meaningful values requires filtering of the history of measurements.

2.3 Load-Balancing Policy

In the context of FollowMe, we plan to use performance monitoring and algorithms that mine asso-
ciation rules to enhance the performance of the pilot application ETEL++. ETEL++ offers an online
version of a regional newspaper. In addition to the traditional features of online services (like navi-
gation, support of multimedia information, ...), ETEL++ will support personalization, i.e., ETEL++
will allow users to choose which areas the personalized newspaper will cover. The choices for a
user are saved into hisuser profile.

Another feature of ETEL++ will be its ability to deliver data according to several different formats
in order to support access from various types of terminals (e.g., PCs, portable phones, palmtops).
Supporting many user-terminals (output devices) means that many different physical representations
of the same logical data exist. All those representations find their origin in the same elementary
structure (the real newspaper, directly out of the journalists hands), and differ in their media type.
For example, an article represented originally as a text file can be converted into an audio file or a
postscript file in order to be delivered respectively over a phone and on a laser printer. It is impor-
tant to note here that the derived representations of a newspaper dramatically increase the volume of
data to manage.

Load balancing policy has therefore to take into account the various constraints mentioned above:

• User’s mobility,

• Computation of several formats depending on user terminal,

• user preferences,

• The underlying architecture.

As described in section 5, the load-balancing policy has to map computations depending on trade-
offs between communication costs and computation costs (see section 5.1). It has also to map users
onto the architecture depending on their physical location and their preferences (see section 5.2).



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 5

3 A Short Survey

In this short survey, we focus on load-balancing techniques. These techniques mainly relies on the
exploitation of profiles. The profiles referred asUser profilemay reflect both the user’s preferences
in terms of geographical location, used terminal and accessed services. W e also refer toresource
profile which reflect the usage of the underlying system.

Monitoring tools allowing to compute profiles reflecting the actual state of the architecture. These
tools provide various numbers, each reflecting the usage of a resource like the CPU, the memory,
the disk or the network links. By providing resources’ profiles, monitoring tools allow applications
to take load-balancing related decisions. Section 3.1 details some problems making performance
monitoring a complex issue. Section 3.2 describes several monitoring tools that are commonly used
under Unix and Windows.

Exploiting user’s profiles relies on data mining techniques. These techniques group users according
to their preferences. Section 3.3 presents a short overview of these techniques, according to the
needs of the deployment of ETEL++.

3.1 What to Monitor, How and When to Measure?

As soon as a computer is switched on, the operating system starts to monitor the resources it man-
ages in order to deal with multiprogramming, sharing, memory allotment, scheduling, interrupts,
etc... Resource monitoring is also possible for high-level applications because the operating system
provides system calls that typically return elementary numbers reflecting the usage of a given re-
source. For example, Unix provides a handy call (getrusage ) that returns information about re-
source utilization of the calling process (user and system times, numbers of input and output blocks,
numbers of pages faults, ...).

The following resources are traditionally monitored: CPU load, disk utilization, memory consump-
tion, I/O rate, caching hits, network packets loss, socket usage, etc...

On top of the basic calls provided by the operating system, tools or applications can build more so-
phisticated monitors to get indirectly numbers that reflect the utilization of a resource. A typical
example is getting numbers reflecting the bandwidth of a network link. While no system calls di-
rectly deliver this information, the bandwidth can be for example deduced by observing the round
trip time of a (say) 16K-bytes message. Note that the round trip time is obtained by invoking (at
least twice) system calls returning the actual time of the day.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 6

Regardless of getting performance directly or indirectly as mentioned above, monitoring tools are
traditionally either exploiting immediately the numbers, or somehow compiling successive numbers
in order to detect tendencies. The first approach is rather straightforward. The second approach
raises the following issues.

In order to detect tendencies, monitoring tools have to get multiple and successive performance
numbers. Deciding the appropriate frequency for sampling is rather difficult. Gathering numbers too
frequently raises the risk of overloading the monitored resource with intrusive requests. A small
sampling frequency is less disturbing, however, but raises the risk of missing major variations and
thus the compilation of the gathered numbers can possibly be inaccurate. The frequency of sampling
usually depends on the type of monitored resource, and is a trade-off between the additional load
imposed over the resource and the confidence in the returned numbers. It also depends on the needs
of the applications using the measurements. Typically, tools likexload or taskmgr.exe sample the
system every second.

In addition to the frequency sampling issue, computing meaningful values based on the elementary
numbers that are gathered is difficult. To isolate tendencies, to show the evolutions of resource us-
age, it is sometime necessary to filter-out transient bursts that may be irrelevant. This filtering is, as
the frequency of sampling, a trade-off between being very reactive and returning numbers that show
very short term phenomenon versus returning numbers that do not closely reflect the actual activity
of the monitored resources but that may be more useful on the long term. Typically, filtering is
based on the traditional notions of average, deviation, mean-square and smoothing. Another com-
mon type of filtering is based on a threshold: a number is returned only when the sample reflects an
utilization that is above a given threshold. This typically requires an event manager or a notification
mechanism.

Another issue -- of a higher level, however -- is the translation of the gathered numbers into a for-
mat that is useful for applications. Typically, tools transform the samples into arrays of numbers,
histograms, graphs or pies.

3.2 A Short Overview of Existing Performance Monitor-
ing Tools

This section presents several well-known tools that monitor systems, and focuses on tools that
monitor the network. Their very goal is to deliver to humans numbers that reflect as closely as pos-
sible the activity of the monitored resources. None of these tools take decisions about what to do
with the gathered data, that is, none try to balance the load of the system depending on the observed
tendencies for example. Rather, these tools are “spies”, and they help users to take smart decisions
about tuning their system by providing accurate, confident and fully trusted numbers. Although the
focus of this section is network tools, we first, however, briefly mention typical tools that monitor
machines.

3.2.1 Monitoring Machines
Every single machine provides low level system calls and some elementary tools of higher level that
monitor the machine itself. Not surprisingly, monitoring is attached to the notion of process, that is,
returned data shows how each process uses the resources. As the amount of information delivered
for every process is rather large, it is sometimes better to merge process-based data and to extract



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 7

from this merging higher level notions like the resource usage of a group of process, or process that
are owned by the same person, or process having parent-child relationships, etc…

The tools generally available deliver roughly the same information, and only their interface with the
user makes each specific. For information, we could mentionxload , sar , vmstat , taskmgr andtop

as the tools that are the most frequently available on Unix and Windows based systems.

3.2.2 Monitoring the Network
Since mid-1995, many groups initiated extensive monitoring of the best known wide area network:
the Internet. Their goal was to encourage research laboratories and companies around the globe to
initiate rigorous joint studies in order to (i) define good metrics to evaluate the performance of the
Internet and (ii) increase the knowledge level we have about the behavior of the network by per-
forming extensive measurements on the short and long term. Several working groups tackled this
problem: The IP Performance Metrics and the Realtime Traffic Flow Measurement groups of the
Internet Engineering Task Force (IETF) (see http://www.ietf.org), the Regional Internet Registry for
Europe (RIPE) (see http://www.ripe.net), and others.

In general, these groups have performed extensive measurements, and some pieces of the software
they developed is now publicly available. We mention here two such tools that can be reused on a
smaller-scale basis.

The Realtime Traffic Flow Measurement group of IETF made publicly available their software
called NeTraMet (see http://www.auckland.ac.nz/net/Internet/rtfm). NeTraMet is an accounting
meter which runs on a PC under DOS or a Unix system. It builds up packet and byte counts for traf-
fic flows, which are defined by their end-point addresses. Addresses can be Ethernet addresses,
protocol addresses (IP, DECnet, EtherTalk, IPX or CLNS, IP port numbers, etc), or any combina-
tion of these. The traffic flows to be observed are specified by a set of rules. Traffic flow data is
collected via SNMP from NeTraMet by a specific program. NeTraMet provides a valuable tool for
analyzing network traffic flows, and should prove to be of interest to anyone interested in network
monitoring, capacity planning, performance measurement, etc.

Another very powerful tool is NNStat. NNStat has been originally developed in 1992 by R. Braden
and A. DeSchon at the University of Southern California, Information Sciences Institute. NNStat is
a collection of programs that provides an Internet statistic collecting capability. The NNStat strategy
for statistic collection is to collect traffic statistics via a promiscuous Ethernet tap on the local net-
works, versus instrumenting the gateways. If all traffic entering or leaving a network or set of net-
works traverses a local Ethernet, then by stationing a statistic gathering agent on each local network
a profile of network traffic can be gathered. Statistical data is retrieved from the local agents by a
global manager. The NNStat distribution comes with several sampleawk programs which process
the logged output of the collect program.

Most of the detailed softwares are based on the following tools:

• Tools similar to the “Ping” call of Unix

• The protocols SNMP and CMIP

SNMP has been designed in the mid-1980's as an answer to the communication problems between
different types of networks. The way it works is very simple: it exchanges network information
through messages (called protocol data units). From a high-level perspective, each message is an
object that contains variables that have both names and values. There are five types of messages that



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 8

SNMP employs to monitor a network: two deal with reading terminal data, two deal with setting
terminal data, and one, the trap, is used for monitoring network events such as terminal start-ups or
shut-downs. Each variable consists of the following information:

• the name of the variable

• the data type of the variable (e.g., integer, string)

• whether the variable is read-only or read-write

• the value of the variable

Basically, SNMP allows to monitor each site running an SNMP agent. The main advantage of this
protocol is that it is in wide use. Therefore, there are a lot of already available agents which provide
monitoring of network activity and hardware characteristics. Some of them also monitor the usage
of memory and disks.

3.3 Data Mining Techniques

The ever growing number of databases related applications (for the purpose of business, science and
engineering for example) raised the need for new techniques and for new tools that can extract use-
ful information from the stored data in order to provide valuable additional knowledge. This extrac-
tion, or discovery of knowledge in databases, is also calleddata mining. It corresponds to a non-
trivial extraction of implicit, previously unknown and potentially useful information from data in
databases [PSF91, ACF94, AMS96, Han96, FPSSU96]. By mining large databases, interesting
knowledge, regularities, specific patterns and high-level information can be extracted and investi-
gated from different angles. The discovered knowledge can be applied to information management,
query processing, decision making, process control, artificial intelligence, statistics and data visuali-
zation. Furthermore, several emerging application for information providing services, such as on-
line services and the World Wide Web, also call for various data mining techniques to better under-
stand user behavior and to ameliorate the service provided. In general, data mining offers opportu-
nities for major revenues.

Data mining poses many challenging issues. Due to space limitations, we unveil here only the tip of
the iceberg: many other interesting issues are presented in [CHY96, CM96]. A first issue is related
to the diversity of data types (typically ranging from relational data to complex objects) and to the
different goals of mining. This diversity make it difficult for one mining system to handle all kinds
of data. Rather, specific data mining systems are constructed, each offering dedicated solutions to
knowledge mining. Another problem comes from the performance of mining algorithms. To effec-
tively extract information from a huge amount of data, the mining algorithms must be efficient and
scalable to very large data sets. This poses severe constraints on the complexity of the mining algo-
rithms, and usually require elegant implementations. The usefulness, certainty, expressiveness and
accuracy of the mined results is another source of hard problems. This becomes a major concern
especially when the database used for mining is updated.

Data mining is an application-dependent issue, and different applications may require different
mining techniques to cope with. In general, however, the kinds of knowledge which can be discov-
ered fall in one of the following categories: mining association rules, multi-level data generalization,
summarization and characterization, data classification, data clustering, pattern-based similarity
search and mining sequential patterns. Each category is briefly detailed in the following sections.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 9

3.3.1 Mining Association Rules

Typically, mining association rulesmeans discovering in a database of sales transactions the im-
portant associations among items, such that the presence of some items in a transaction will imply
the presence of other items in the same transaction. Two classical example are the discovery that
``80% of the customers purchasing milk also purchase bread'' and that ``70% of the people buy
wheat bread if they buy 2% milk''. Such knowledge is useful for example to better organize the
shelves, or to develop grouped promotions.

Mining association rules may require to repeatedly scan through the entire database to find different
association patterns. As such, efficient algorithms and some methods for further performance en-
hancement are needed. [AIS93, AS94, PCY95] present typical algorithms that are efficient and also
representative of mining association rules techniques.

Mining association rules can be expressed as follows. LetD be a set of transactions, such that each
transaction contains a subset of items of the itemsetI (e.g.,I is the set ofall the items you can pur-
chase in your local store. A transaction is what you actually bought the other day). An association
rule is an implication of the formX�Y, whereX⊂I, Y⊂I andX∩Y=∅. The ruleX�Y holds for the
transaction setD with confidence cif c% of transactions inD that containX also containY. The rule
X � Y hassupport sin the transaction setD if s% of transactions inD contains .

Confidence denotes the strength of implication and support indicates the frequency of the occurring
patterns in rule. Only those rules that have a reasonably large support are considered.

The algorithms cited above typically implements the following two steps:

Discover the large itemsetsL, i.e., the sets of itemsets that have a support above a pre-determined
minimum supports.

For each large itemsetl∈L, search for the association rulesl1�l2 with l1⊂L, l2⊂L, l1∩l2= ∅ and l1

∪ l2 = l . Select the rules that have a confidence above a pre-determined minimum confidencec.

It is noted that the overall performance of mining association rules is determined by the first step --
deriving the rules from the itemsets being straightforward.

3.3.2 Multi-Level Data Generalization, Summarization and Charac-
terization

Data often contain detailed informationat primitive concept levels. It is often desirable to summa-
rize a large set of data and present it at a high concept level. This functionality is achieved by the
class of mining algorithms that are presented in this section. It is important to note that data gener-
alization is the most popular way to use mining algorithms, often referred to as thedata cube ap-
proach[Squ95, Moh 96, Inm 96, HRU 96, HAMS 97].

The general idea behind the data cube approach (also called OLAP, for On-Line Analytical Proc-
essing) is to materialize (i.e., pre-compute, typically off-line) and store certainexpensivecomputa-
tions that are frequently inquired, especially those involving aggregate functions such as count, sum,
average, max, etc. The materialized views are stored in a multi-dimensional database called a data
cube (or a data warehouse) that can be interrogated for the purpose of knowledge discovery. Typi-
cally, values are grouped into a hierarchy. For example, the transactions reflecting the purchases of
customers on a every day basis can be grouped into ``week'', ``month'' and ``year'', and for each
group, an aggregate value of the sales for that period is automatically computed. Generalizations



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 10

and specializations can be performed on the data cube by roll-up and drill-down operations. The
data cube approach is a valuable technique for many business-oriented applications, since it pro-
vides many different views on the same basic data, as it enforces performances by pre-computing
frequently asked questions. [CHY 96] also details a technique for on-line data generalization, called
the attribute-oriented induction approach.

3.3.3 Data Classification
Data classification is the process which finds the common properties among a set of objects in a

database and classifies them into different classes. The data is classified according to a model,
which is usually constructed from a sample extracted from the real database. For example, it might
be desirable for a insurance company to classify its customers according to the date of their last
crash, and to subsequently mine that such customers are likely to be single, male, below 25 years
old, living in large cities. A well know approach to data classification is the use of decision
trees [Qui86, MRA95, SAM96]. In this approach, a small sample is first used to built an initial de-
cision tree. If the tree does not model accurately enough the complete set of data, a selection of the
exceptions is added to the sample, and the process continues until the correct decision tree is found.

3.3.4 Data Clustering
The process of grouping physical or abstract objects into classes of similar objects is called clus-

tering. Clustering analysis helps construct meaningful partitions of a large set of objects based on a
divide-and-conquer approach which decomposes a large scale system into smaller components. In
the context of data mining, data clustering identifies densely populated regions, according to some
distance measurement, in a large, multidimensional data set [NH94, ZRL96]. In other words, data
clustering tries to discover the overall distribution patterns of a data set, and thus facilitates taxon-
omy.

3.3.5 Pattern-Based Similarity Search
Temporal or spatial-temporal data constitutes a significant portion of the data stored in databases.

Typical examples are financial databases for stock price index and medical databases. Searching for
similar patterns in such databases is useful to discover and predict the risk, causality and trend asso-
ciated with a specific pattern. Classical examples of queries for this type of database include identi-
fying companies with similar growth patterns, products with similar selling patterns, stocks with
similar price movements, tumors with similar initial characteristics, similar weather patterns, etc.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 11

4 Design

4.1 Overview

Monitoring tools of work package G rely on the notion of history. The history allows to collect val-
ues reflecting the performances of hardware resources such as hosts and network.

In the proposed design of work package G, the management of histories is addressed by a software
component called Monitor. A Monitor is dedicated to a host and deals with the histories related to
the performances of its hardware and software resources. A Monitor is responsible of creating histo-
ries and periodically collecting performance values in order to update them.

As soon as an History is created, applications can directly extract information without requesting the
Monitor anymore. The extraction of information may be performed by means of Filters and Tests as
described hereafter.

4.1.1 Class Diagram

To create an History, an agent has to requestMonitor (Section 4.3 describes the actual interface).
Each History is based on aMeasurement which represents the resources the agent wants to
monitor. As soon as the History is created,Monitor updates it by periodically collecting values of
Measurement.

An application or an agent is able to create newMeasurement reflecting its specific needs.
Measurement may be a complex aggregate of variousbasicMeasurement . Eachbasic-
Measurement reflects the way aTarget uses aResource :

• A Resource may be one of the hardware component of a host (Disk, CPU, Memory, Net-
work…). A Resource may also be application-specific. For example, the DeviceGateway de-
scribed in User Access [DH3] may be a monitored in terms of number of open connections.

• A Target may be either a cluster [DB3, DB4] or a set of clusters. We also provide a specific
Target calledHOSTwhich is an exception reflecting the activity of all the objects of a given
Host.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 12

As an example, aMeasurement may be built on theResource CPU and aTarget based on
the Clusters of Etel++ (see section 5).

Figure 2 summarizes relationships between the main components we mentioned. Use of History by
application is described more in details in section 4.2. In this diagram, application is considered as a
client of Service Deployment package. This application may be either implemented by means of
agents (see work package D) or mobile objects (see work package B). Some examples may be found
in section 5.

Requests
monitoring

Uses Manages

Creates

Reflects

ProvidesCreates

Uses

n

n

n n

n
n

n

Application

Monitor

History

Target Resource

Measurement

Value

Monitoring Tools

Figure 2 : Object model diagram

Details related to the concept of resource are provided in Figure 3. Note that monitoring hardware
resources is implemented in the work package G whereas Application-specific resources can be
implemented depending on needs of pilot applications.

Resource

Hardware Resource Application-specific
resource

CPU Memory Disk Network

Figure 3 : Resources

4.2 Use of Histories

We provide a set of tools allowing the management of histories. As described in Figure 4, the appli-
cation interrogates histories through various interfaces. The main goals of these interfaces are:



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 13

• To select the appropriate information in the large set of data gathered in Histories. This selection
is performed by means of Filters. Filters can be used in a pipeline manner to exploit the data
gathered in Histories. Section 4.2.1 provides an explanation of the notion of Filter and also some
examples.

• To provide a well-adapted interrogation mode. The interrogation may be either based on re-
quest-mode or notification-mode (see section 4.2.2).

n

n
Requests

Notifies

Notifies

n

Interrogates

n

Requests Manages

Application

Monitor

View

HistoryFilter

Test

Select Interpolate Average

n

Notifies

Figure 4 Use of Filters and Tests

4.2.1 Filters

The exploitation of measurements collected into Histories appears as a critical requirement in each
monitoring tool. This exploitation relies on complex operations on a set of raw-values in order to
compute higher level data more directly relevant to applications. In the proposed architecture, these
operations are executed by mean of Filters.

Typical filters are for example:

• Average, minimal or maximal value over an interval of time, mean-square, etc…

• Linear interpolation, high- or low-gain filters…,

• Prediction of tendencies.

Filters can also be used in a pipeline manner for delivering sophisticated values based on several
elementary filters. For example filters implementing selections and computing average values may
be combined to eliminate transient bursts.

Work package G provides as a basis numerous filters listed in section 4.3.1. Application can also
implement their own filters based on the abstract class Filter.

4.2.2 Request and Notification

There are two basic ways to use histories of measurements that have been compiled:



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 14

• Request-based mode. In this case, an application gets values upon explicit requests. A typical
request needs the resource-name and a time range as arguments, and may return for example the
average load placed on that resource during the specified period.

• Notification-based mode. In this case, an application gets values when an application-defined
condition becomes true. To use an history in this mode, the application has to specify the name
of the resource, a time range, and a condition. For example, the application can ask to be noti-
fied when the average load placed on that resource for the period becomes greater than a specific
threshold value.

In general, the tradeoffs for choosing between these two modes are analogous to the ones that exist
for the delivery of messages either upon request or via a notification service.

Filters and Histories both provide a Request-based mode. This mode is described in a common in-
terface called View. As detailed hereafter (see section 4.3.4), view provides a set of methods al-
lowing to evaluate the value stored in an History in a given time range.

The request-based mode used between an application and the various components of work package
G is depicted in Figure 5. This example represents the interrogation of an History through a Filter.

Application Monitor Filter History

Requests
monitoring

Creates

Creates

Delivers
history

Requests
value

Replies

Replies

Requests
value

Figure 5 : Diagram of Request-based mode

This diagram corresponds to the code presented in Figure 6 Note that an overview of the interface
used in this example can also be found Section 4.3.

History h;
Measuremen t m = new basicMeasurement(CPU(), new Target(HOST()));
/*

* creation of a basicMeasurement for monitoring
* the utilization of the CPU in a given host
*/

h = Monitor.monitor(m, new Frequency(20000));
/*



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 15

* creation of the History corresponding to the basicMeasurement
*/

Filte r f = Interpolation(h);
Valu e v = f.getEvaluation(date);
/*

* the exploitation of this History is made on a Request-mode
* through an Interpolation Filter
*/

Figure 6 : Use of Request-based mode

The notion of Test allows a service to be notified when an application-defined condition becomes
true. Creation of Test and its use are described Figure 7.

Application Monitor Test History

Creates

Requires
history

Notification of
modification

Delivers
history

Creates

Notification
of event

Notification of
modification

Figure 7 : Diagram of Notification-based mode

Notice that both Histories and Filters may be used on a Notification-based mode through a Test.
This diagram corresponds to the code written in Figure 8.

History h;
Measuremen t m = new basicMeasurement(CPU(), new Target(HOST()));
h = Monitor.monitor(m, new Frequency(20000));

Test t = new myTest(h);
/*

* creation of myTest which is an application-specific Test
* plugged on the output of History h.
*/

Observe r o = new myObserver ();
t.addObserver(o);



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 16

/*
* Test is Observable. The application may execute the adequate
* processing by implementing an Observer.
*/

Figure 8 : Use of Notification-based mode

4.3 API

We present the main classes of the proposed API of work package G. We do not describe the ex-
haustive API which can be retrieved onhttp://hyperwav.fast.de/inria/WPGinterface/.

4.3.1 Class Hierarchy

• class java.lang.Object
• class ServiceDeployment.Monitor
• class ServiceDeployment.Frequency
• interface ServiceDeployment.Measurement
• class ServiceDeployment.MeasurementAggregate (implements ServiceDeploy-

ment.Measurement)
• class ServiceDeployment.basicMeasurement (implements ServiceDeploy-

ment.Measurement)
• interface ServiceDeployment.Value
• class ServiceDeployment.ValueAggregate (implements ServiceDeployment.Value)
• class java.util.Observable

• class ServiceDeployment.View
• class ServiceDeployment.History
• class ServiceDeployment.Filter (implements java.util.Observer)

• class ServiceDeployment.Interpolation
• class ServiceDeployment.Select
• class ServiceDeployment.Average

• class ServiceDeployment.Test (implements java.util.Observer)
• class ServiceDeployment.Resource

• class ServiceDeployment.CPU
• class ServiceDeployment.Disk
• class ServiceDeployment.Memory
• class ServiceDeployment.Network

• class ServiceDeployment.Target
• class java.lang.Throwable (implements java.io.Serializable)

• class java.lang.Exception
• class ServiceDeployment.NoEvaluationException

4.3.2 Class ServiceDeployment.Monitor



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 17

java.lang.Object
|
+----ServiceDeployment.Monitor

public classMonitor

extends Object

Monitor Manages the Histories. It requests values of Measurements periodically and delivers them
to Histories. Services may also request a single value to Monitor by mean of Moni-
tor.getEvaluation(Measurement m).

Version:

March 1998

Author:

mb

See Also:

Measurement, History

public Monitor ()

Constructor of Monitor. There should be only one Monitor on a Host.

public History monitor ( Measurement m, Frequency f)

Method monitor allows an application to get an History and to start the updating of the History with the
provided frequency.

public void stopMonitoring ( History h)

Method stopMonitoring allows an application to stop the updating of the History. This method does not
destroy the History.

4.3.3 Class ServiceDeployment.basicMeasurement

java.lang.Object
|
+---- ServiceDeployment.Measurement

|
+----ServiceDeployment.basicMeasurement

Version:

March 1998

Author:



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 18

mb

public classbasicMeasurement

extendsMeasurement

public basicMeasurement ( Resource r, Target t)

Constructor allows the application to define the Resource and Target to monitor.

protected Value getValue ()

Applications do not access this method which is the way Monitor updates an History.

Overrides:

getValuein classMeasurement

public Resource getResource ()

Delivers the Resource specified in Measurement.

public Target getTarget ()

Delivers the Target specified in Measurement.

4.3.4 Class ServiceDeployment.View

java.lang.Object
|
+----java.util.Observable

|
+----ServiceDeployment.View

public abstract classView

extends Observable

superclass of History and Filter. View defines the interface applications can access on a Request-
based mode. View provides a set of methods allowing to evaluate the value stored in an History in a
given time range.

Version:

March 1998

Author:



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 19

mb

See Also:

History, Filter

public abstract Value getEvaluation (Date date) throws NoEvaluationException

Delivers the Value corresponding to a given Date. Type of Date is defined in Java.util.Date.

public abstract Date getBegin () throws NoEvaluationException

Delivers the Date corresponding to the first Value.

public abstract Date getEnd () throws NoEvaluationException

Delivers the Date corresponding to the last Value.

public abstract boolean isEmpty ()

Delivers true if View does not store any Value.

public abstract Value getValueAfter (Date date) throws NoEvaluationException

Delivers the first Value of View after Date.

public abstract Value getValueBefore (Date date) throws NoEvaluationException

Delivers the first Value of View before Date.

public abstract Date getDateAfter (Date date) throws NoEvaluationException

Delivers the first Date of View after Date.

public abstract Date getDateBefore (Date date) throws NoEvaluationException

Delivers the first Date of View before Date.

public abstract String getType ()

4.3.5 Class ServiceDeployment.Test

java.lang.Object
|
+----java.util.Observable

|
+----ServiceDeployment.Test

public abstract classTest



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 20

extends Observable

implements Observer

Test is applied on the output of History or Filter in order to provide notification-based interface.

Version:

March 1998

Author:

mb

See Also:

Measurement, History

public Test ( View v)

Constructor of Test. V is the View Test has to be plugged on.

public abstract boolean evaluate ()

implements the test to apply on View. If evaluate delivers true the service is notified.

4.3.6 Class ServiceDeployment.History

java.lang.Object
|
+----java.util.Observable

|
+---- ServiceDeployment.View

|
+----ServiceDeployment.History

public classHistory

extendsView

History gathers values delivered by Measurement. Each value is associated to the corresponding
Date. History provides the interface of View in order to retrieve a value before or after a date. Filters
and Tests may also be applied on the output of History in order to provide adequate output. There is
no publis interface to History since History is delivered and updated by Monitor. The only way to
interrogate History is specified in the View interface.

Version:

March 1998

Author:

mb



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 21

See Also:

Filter, Test, Value, Monitor



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 22

5 Use-Cases

This section aims to present examples of load-balancing policies. These examples are expected to
outline some useful features of FollowMe. Section 5.1 presents the use of code mobility in order to
balance the computation and communication costs. Then, section 5.2 presents the exploitation of
users’ profiles to group users and to reduce the load of servers.

5.1 Exploiting Performance Monitoring to Balance Com-
putation and Communication Costs

From a bird’s eye-view, the architecture on top of which ETEL++ is built is made of three entities:

1) A central server located at Ouest-France (information provider). On this server are stored the
articles once they are produced by the journalists. This server is connected to several secon-
dary servers described next.

2) Secondary servers that are FollowMe-enabled machines. Each of these server has storage
and computing power. To a secondary server are connected a set of user terminals described
next.

3) User terminals that can be for example personal computers. A user ultimately browses its
personalized electronic version of the newspaper on his terminal.

Allowing a user to browse his newspaper essentially consists in (i) determining what type of termi-
nal is used, (ii) what are the chosen areas of information to cover and (iii) sending the relevant data
from the central server to the user terminal. It is important to note here that the original (raw) data is
created inside the Ouest-France server and that the derived data is displayed on users' terminal. As
such, it is crucial to determine where that transformation takes place. Not surprisingly, three loca-
tions have to be considered:

• Inside Ouest-France's central server. In this case, all the possible versions are computed
once, and the relevant versions can be either pushed or pulled by each secondary server be-
fore being delivered to users. The load on these secondary servers or on the terminal used by
the users is almost zero: all the computations have been already done. The network, how-
ever, could become a bottleneck and might be severely congested. In addition, note that the
Ouest-France machine is also heavily loaded.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 23

• Inside each secondary server. With this approach, raw data is transmitted to these servers.
Raw data tend to be of a much smaller size than the derive counterpart, and only a single
version of that raw data travels around. In this case, all secondary servers have to compute
their own derived versions. Two different servers will certainly make redundant computa-
tions since they are likely to generate at least a certain number of similar versions. With this
approach, the burden is better distributed. Secondary servers, however, need a fairly reason-
able amount of storage to keep the derived versions, and must also have a good processing
power. This could not be the case for every single machine, consequently creating another
set of problems.

• Inside the user's terminal. In this case, only the relevant version is computed using the raw
data transmitted to the user terminal itself. In this case, the user terminal is loaded, and must
be able to perform this computation efficiently. This approach might not be practical since
user terminals are likely to have very different power and storage characteristics. Further-
more, storage space and computing power is somehow wasted since secondary servers are
not involved.

It is possible to trade the costs of computing the derived versions against the costs of sending the
versions via the network by appropriately choosing the location(s) of data processing. Computing
the derived data very early (i.e., close to the central server) reduces computing costs (done once)
while it increases the communication costs. The opposite applies if the derived data is computed
very late, that is, close to the users. A flexible computing strategy would be to compute the derived
versions using a carefully chosen combination of the previous locations. For example, the central
server may compute a subset of the derived data, the rest may be divided among the secondary serv-
ers, and communications between servers could be enforced to leverage. In this case, the degree of
computation redundancy, the amount of replication could be set such that it minimizes the overall
cost.

Determining the best configuration is hard, and is certainly a NP-complete problem. Monitoring
tools might be helpful in this case, because they can be used to define heuristics improving the be-
havior of the system. Observing the load of resources, and also being able to foresee a possible be-
havior of those resources might help ETEL++ in finding a good placement of its computations and
its data in order to maximize its efficiency.

5.2 Mining User Profile to Group Users on Servers
To enforce the quality of service offered by ETEL++, we try to build a load-balancing policy that is
partly based on the mining of association rules between the profiles of users. By grouping users that
have close profile in terms of their personal choices, it is possible to assign group of users to spe-
cific servers that would best serve their requests. Assigning groups to the relevant servers help to
balance the load across all the available servers, each managing a reduced set of users.

We specifically intend to use mining algorithms to find the themes users are likely to access fre-
quently (i.e., large itemsets using the data mining vocabulary). Given that knowledge, groups can be
created and then assigned onto servers. While the use of mining technology is rather straightforward
in our case, finding the best mapping in order to create groups that will improve significantly the
performance is still an issue. Finding efficient solutions is part of our ongoing work.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 24

6 Status

The main goals of work package G are as follows:

• Providing monitoring tools. These tools are mainly based on Histories and Filters.

• Implementing a specific load-balancing policy dedicated to Etel++. This policy is based on both
monitoring tools an data mining techniques.

Three documents have been produced (Survey, Requirements and Design). The design of the load-
balancing policy relies on the design of Etel++ which is in preparation. Therefore, this document
focuses on monitoring tools.

The status of each part is as follows:

• Monitoring tools are designed. The implementation is well advanced. However, much work is
needed on the implementation of specific resources such as Network.

• The design of a load-balancing policy fulfilling the requirements of Etel++ has been initiated.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 25

7 References

DJ2

INRIA, TCM. Requirements of Pilot Application 2: Etel++ (Work Package J). March 1998.

DB3

APM. Design of Mobile Object Workbench (Work Package B). December 1997.

DB4

APM. Interface of Mobile Object Workbench (Work Package B). December 1997.

DH3

FAST. User Access (Work Package H). January 1998.

ACF

Rakesh Agrawal, Michael J. Carey, Christos Faloutsos, Sakti P. Ghosh, Maurice A. W. Houtsma, To-
masz Imielinski, Balakrishna R. Iyer, A. Mahboob, H. Miranda, Ramakrishnan Srikant, and Arun N.
Swami. Quest: A project on database mining. In Richard T. Snodgrass and Marianne Winslett, editors,
Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, page 514,
Minneapolis, Minnesota, 24-27 May 1994.

AFS93

Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in sequence data-
bases.Lecture Notes in Computer Science, 730:69, 1993.

AIS93

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between sets of
items in large databases. In Peter Buneman and Sushil Jajodia, editors,Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, pages 207-216, Washington, D.C., 26-
28 May 1993.

ALSS95

R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. Fast similarity search in the presence of noise,
scaling, and translation in time-series databases. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro Ni-
shio, editors,VLDB '95: proceedings of the 21st International Conference on Very Large Data Bases,
Zurich, Switzerland, Sept. 11-15, 1995, pages 490-501, Los Altos, CA 94022, USA, 1995. Morgan
Kaufmann Publishers.



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 26

AMS96

Rakesh Agrawal, Manish Mehta, John Shafer, Ramakrishnan Srikant, Andreas Arning, and Toni Bollin-
ger. The quest data mining system. page 244. AAAI Press, 1996.

AS94

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Jorgeesh
Bocca, Matthias Jarke, and Carlo Zaniolo, editors,20th International Conference on Very Large Data
Bases, September 12-15, 1994, Santiago, Chile proceedings, pages 487-499, Los Altos, CA 94022,
USA, 1994. Morgan Kaufmann Publishers.

CHY96

Ming-Syan Chen, Jiawei Han, and Philip S. Yu. Data mining: an overview from a database perspective.
Ieee Trans. On Knowledge And Data Engineering, 8:866-883, December 1996.

CM96

Chris Clifton and Don Marks. Security and privacy implications of data mining. InWorkshop on Data
Mining and Knowledge Discovery, number 96-08, pages 15-19, Montreal, Canada, June 2 1996. ACM
SIGMOD, University of British Columbia Department of Computer Science.

CPY96

M.-S. Chen, J. S. Park, and P. S. Yu. Data mining for path traversal patterns in a web environment. In
ICDCS '96; Proceedings of the 16th International Conference on Distributed Computing Systems; May
27-30, 1996, Hong Kong, pages 385-393, Washington - Brussels - Tokyo, May 1996. IEEE.

FPSSU96

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors.Advances in Knowledge
Discovery and Data Mining. MII Press, Mento Park, 1996.

FRM94

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series data-
bases.SIGMOD Record (ACM Special Interest Group on Management of Data), 23(2):419-429, June
1994.

HAMS97

Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant. Range queries in OLAP
data cubes.SIGMOD Record (ACM Special Interest Group on Management of Data), 26(2):73, 1997.

Han96

Jiawei Han. Data mining techniques. In H. V. Jagadish and Inderpal Singh Mumick, editors,Proceed-
ings of the 1996 ACM SIGMOD International Conference on Management of Data, page 545, Montreal,
Quebec, Canada, 4-6 June 1996.

HRU96

Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data cubes efficiently.
SIGMOD Record (ACM Special Interest Group on Management of Data), 25(2):205, 1996.

Inm96

W. H. Inmon. The data warehouse and data mining.Communications of the ACM, 39(11):49-50, No-



DG3: Design of WPG ESPRIT Project No. 25 338 - FollowMe

28.04.98 Work package G Page 27

vember 1996.

Moh96

N. Mohan. DWMS: Data warehouse management system. In T. M. Vijayaraman et al., editors,Pro-
ceedings of the twenty-second international Conference on Very Large Data Bases, September 3-6,
1996, Mumbai (Bombay), India, pages 588, Los Altos, CA 94022, USA, 1996. Morgan Kaufmann Pub-
lishers.

MRA95

Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. MDL-based decision tree pruning. InProceed-
ings of the First International Conference on Knowledge Discovery and Data Mining (KDD'95), pages
216-221, August 1995.

CY95

Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash based algorithm for mining asso-
ciation rules. In Michael J. Carey and Donovan A. Schneider, editors,Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, pages 175-186, San Jose, California, 22-
25 May 1995.

PSF91

Gregory Piatetsky-Shapiro and William Frawley, editors.Knowledge Discovery in Databases. The MIT
Press, Cambridge, MA, 1991.

Qui86

J. Ross Quinlan. Induction of decision trees.Machine Learning, 1:81-106, 1986.

SAM96

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. In T. M.
Vijayaraman et al., editors,Proceedings of the twenty-second international Conference on Very Large
Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 544-555, Los Altos, CA 94022,
USA, 1996. Morgan Kaufmann Publishers.

Squ95

Cass Squire. Data extraction and transformation for the data warehouse. In Michael J. Carey and Dono-
van A. Schneider, editors,Proceedings of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, pages 446-447, San Jose, California, 22-25 May 1995.

ZRL96

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data clustering method for
very large databases.SIGMOD Record (ACM Special Interest Group on Management of Data),
25(2):103, 1996.


