

ESPRIT Project No. 25 338

Work package E

Personal Profiles

DE1: Survey

ID: DE1Survey Date: 07/01/98

Author(s): Steve Battle Status: deliverable

Reviewer(s): Distribution:

Change History

Document Code Change Description Author Date

DE1.1 First draft of document. No changes. Steve Battle 19/11/97

DE1.2 Deliverable Steve Battle 01/12/97

DE1.3 Added review of MONDO Steve Battle 07/01/98

DE1.4 Added review of DOM Steve Battle 19/01/98

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E i

PERSONAL PROFILES

Personal Information 1

1 Formats

Meta-Content Framework: MCF 2

Versit's vCard and vCalendar 3

The eXtensible Markup Language: XML 4

Resource Description Framework: RDF 5

2 Frameworks

MONDO 6

Document Object Model 7

Conclusions 8

References 9

appendix 1: vCard properties 11

appendix 2: vCalendar properties 12

appendix 3: XML profile based on vCard properties 13

appendix 4: Document Type Declaration (DTD) example 14

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 1

Personal Profiles

The aim of this document is to survey the current state of the art in the storage and use of personal information. The
quantity of data appearing in such a profile is generally small and highly irregular. Conventional database techniques,
optimised as they are for large amounts of highly regular data, are therefore inappropriate. We look instead at an
emerging body of standards designed for keeping track of so-called meta-data. Profiles act as a kind of catch-all for all
the odd little pieces of data required in the followMe system. Meta-data gives us a systematic way of thinking about
them.

Personal Information
Personal information is all about people and the resources they use. It may contain both public and private data. The
personal profile would contain the following kinds of information:

User identification
Addressing properties
Security properties
Lifestyle properties
Service specifics
Agent specifics

We need a data format that can cope with this wide range of content.

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 2

1 Standards

Meta-Content Framework
MCF began life as a way of describing and cataloguing the content of web pages, hence the name meta-content; con-
tent about content. MCF emerged out of Apple's technology seeding programme as the HotSauce browser plug-in (aka
project X) which allowed the user to view meta-data within a 3D navigation space. The ancestry of MCF includes
knowledge representation languages such as CycL, KRL and KIF. KIF is the Knowledge Interchange Format usually
associated with KQML, the Knowledge Query and Manipulation Language. KIF defined a core language with an
extensible vocabulary based on frames. The goals of MCF are therefore:

• To establish a minimum core of properties.

• To make this core dynamically extensible.

Attempts at establishing this core include the 1995 Metadata Workshop, known as the `Dublin core'. This was in-
tended to describe information about electronically stored documents, such as web pages. This kind of meta-data
would assist the construction of indices for the internet, allowing greater precision than current key-word searches.
Both MCF and the Dublin-core were designed to be independent of any particular syntax.

Subject The subject area of the document.
Title The name of the document.
Author A person or agent responsible for the content of the document.
Publisher An agency responsible for making the document available.
OtherAgent Persons or organisations other than authors or publishers with some contribution.
Date The date at which the document became available in its current form.
ObjectType A category the document belongs to.
Form The kind of machine readable format of the document.
Identifier A unique reference for the document.
Relation The document’s relationship with another document.
Source A document from which it is derived.
Language The language in which the document is written.
Coverage The spatial or temporal relevance of the document.

An MCF document defines a general purpose database, comprising:

• A set of nodes.

• A set of directed, labelled arcs.

Each arc is a directed relationship between a pair of nodes, having dinstinct source and target nodes. The arc is also
labelled, but the label is just the name of another node. This node may belong to the core or it may be user-defined.
The MCF core defines a set of bootstrap nodes which provide the primitives for constructing new nodes. In this exam-
ple, these bootstrap nodes include the domain and range of a new relationship, and the typeOf relationship between
nodes.

Reads

User NewsItem

rangedomain

User NewsItem

Steve Weather

typeOftypeOf

Reads

Figure 1: Defining and using a new MCF relationship

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 3

Versit's vCard and vCalendar
vCard

Where MCF focussed primarily on the description of documents, the VCARD personal data interchange (PDI) specifi-
cation (1996) was designed as an electronic business card, containing information about the user and the organisation
they work for. In the same way we hand out business cards to our colleagues, the vCard only contains data the user is
happy to be made public, side-stepping the issue of security. A vCard contains properties relating to identification of
the user, addressing for postal delivery, telecommunications including email, fax and phone, simple geographic data,
properties relating to the organisation the user works for, and security. While the defined vCard properties overlap
those required in followMe, it does not entirely cover the required functionality, particularly with respect to storing
data about the services employed by the user. Because these service requirements are application specific there is a real
need for extensibility. The following vCard fragment gives a flavour of vCard syntax.

BEGIN:VCARD
VERSION:2.1
FN: Steve Battle
N: Battle;Steven;Andrew;Dr.
END:VCARD

vCalendar

The vCalendar specification is a set of properties suitable for building diary objects. Like vCard, vCalendar is sup-
ported by multiple vendors. It is a container for scheduling and reminders. A schedule includes entities called vEvents
which represent extended periods of time. They may have additional properties which define the details of a meeting,
for example. Reminders include vToDo entities which aren’t tied down to specific times, but might indicate a list of
jobs that need doing within some stated interval of time.

Dates and times are represented as ISO 8601 strings, where the month is numeric and the time is 24 hour.
<YYYY><MM><DD>T<HH><MM><SS><type>

The recommended Universal time (UTC) is indicated by appending a ‘Z’ to the string. The start of the next millenium
would be represented by “20000101T000000Z”.

A period of time is represented according to the ISO 8601 standard as the following string, where square brackets
indicate an optional item.

P[<years>Y][<months>M][<weeks>W][<days>D][T[<hours>H][<minutes>M][<seconds>S]]

vCalendar also supports ways of representing recurrent events using XAPIA’s CSA specification.
<frequency><interval><frequency modifier>(<end date>|<duration>)

The frequency can be daily (D), weekly (W), monthly (M) or yearly (Y). The interval is a number indicating the num-
ber of days/weeks/months/years between recurrences. The modifer depends on the frequency used, and allows the rule
to be more specific about the time of recurrence. For example you could specify that you get paid on the last Friday of
every month. Finally we can specify either and end date or maximum number of occurrences that the rule should re-
peat for. The example below is a simple vCalendar entity.

BEGIN:EVENT
DTSTART:19971211T090000
DTEND:19971212T170000
ATTENDEE;ROLE=ATTENDEE:STATUS=CONFIRMED:Steve Battle
END:EVENT

Vcard and vCalendar entities can be linked together. We may want to associate a specific group of people (vCards)
with a particular meeting, or designate an organisation as the host for that meeting. vCalendar provides a comprehen-
sive set of calendar tags which look sufficiently powerful to support the kinds of diary activities envisaged in the fol-
lowMe framework.

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 4

Appendices 1 and 2 contain a complete set of tags and attributes for vCard and vCalendar.

The eXtensible Markup Language: XML
The need for extensibility in MCF led its designer, R.V. Guha of Netscape Communications to propose that the MCF
model is implemented in the eXtensible Markup Language, XML. XML is actually a subset of SGML, the Standard
Generalised Markup Language in which more well known languages such as HTML are formally defined. However,
while SGML is large and difficult to learn, the minimal features of XML were selected for ease of use. XML has the
same look and feel as HTML but can be extended by providing a document
type declaration (DTD), which provides a grammar for the body of the document. Both vCard and vCalendar are eas-
ily mapped onto XML. The vCard specification includes a suggested mapping from vCard to HTML forms. The at-
tribute names in this mapping could in turn be mapped directly onto XML tags. The result of one possible mapping
onto XML can be seen in appendix 3. A typical Document Type Declaration for appendix 3 is shown in appendix 4.

The eXtensible Markup Language (XML) is a simple language designed for the storage and transmission of informa-
tion on the internet, controlled by the WorldWide Web Consortium (W3C). XML is actually a subset of SGML, the
Standard Generalised Markup Language in which more generally known markup languages such as HTML are for-
mally defined. Unlike SGML, XML is small and easy to learn. While HTML has generated a new level of consistency
between web documents, it's function is confined to markup; describing the way things look. HTML does not do a
good job at representing what is increasingly known as meta-data. This is additional information that sits alongside
existing data, defining it's structure and emphasising important content for a variety of purposes. A well formed XML
description comprises a hierarchical structure of paired tags, using the <tag>...</tag> syntax familiar from HTML.
The structure is hierarchical in that the structure can be nested to any depth. In addition to this nesting, the opening
tag may posess simple attributes. e.g. <TEL TYPE="FAX">...</TEL>. The tags one can use with HTML are fixed by
big players like Netscape and Microsoft, whereas XML is extensible; putting power back into the hands of the users,
allowing more creative use of tags with customised functionality. This freedom is balanced by moves to add optional
extensions on top of basic XML. These additional layers don't change the language but provide standard sets of tags
for common uses. Proposed extensions currently include:

• XML-TYPE Commonly used data types.

• XML-LINK (XLL) Hyper-links for XML.

• XML-STYLE (XSL) Style sheets for markup.

• CML Chemical Markup Language (an example of a domain specific extension).

• RDF Resource Description Framework.

Also, new W3C standards for privacy and profiling on the web are based on XML.

 XML is well supported by Microsoft who provide a Java based XML interpreter. Microsoft is already using XML in
anger with their Channel Definition Format which is used to specify details for server push technologies.

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 5

Resource Description Framework: RDF
RDF is the product of merging MCF with XML. It is a formalisation of the way that XML could be used to describe
meta-data. Where XML follows an essentially grammatical structure, the RDF extensions are more suited to the de-
scription of graphical structures. Because a graph can be flattened into a grammatical structure in so many ways, this
additional level of interpretation provides a consistency which may not be immediately apparent in the one dimen-
sional XML.

The example below uses the graphical structure of RDF to describe an interface to a service acting as a middle tier
between a database application and the database itself. It allows the application to construct a new query, adding col-
umns to the projection and asserting appropriate selection conditions. When the query is complete, it may be executed,
the results can be fetched one at a time and the appropriate columns can be read out. As you can see from the Interface
definition below (described in CORBA IDL), the interface typing is represented but it fails to capture this behavioural
aspect.

interface QueryBuilder {
 long open() ; // open a new query

 void project(in long handle, in string exp) ; // add column to the query
 void select(in long handle, in string exp) ; // add a condition to the query
 void execute(in long handle) ; // perform the query

 void fetch(in long handle) ; // fetch the next row
 string getColumn(in long handle, in string exp) ; // return column value
 void close(in long handle) ; // close an existing query
} ;

The required behaviour can be described as a finite state graph, where each node represents a state the service may be
in at any time, and the arcs drawn between them represent method invocations on the service. There are many ways
this graph could be flattened into XML. Each node, and the arcs attached them could be defined separately. The XML
below uses the idea of embedded assertions so that we can encode the graph moving from left to right. Note that it
would be equally valid to encode the graph going from right to left. Because of the huge variety of such encodings,
RDF must be parsed internally into this graph structure, otherwise operations like graph matching would fail. The
RDF is deliberately untyped as the finite state graph could be used in conjunction with the typed interface definition
above.

<RDF:assertions>
 <RDF:resource id=“start”>
 <open>
 <RDF:resource id=“1”>
 <project:column>1</project>
 <select:condition>1</select>
 <execute>
 <RDF:resource id=“2”>
 <fetch>2</fetch>
 <getColumn:column>2
 </getColumn>
 <close>
 <RDF:resource
 id=“stop”/>
 </close>
 </RDF>
 </execute>
 </RDF>
 </open>
 </RDF>
</RDF>

As a concrete representation of MCF, RDF provides a general way of representing graph based information, including
logical structures which could support formal deductive reasoning.

start

1

2

stop

project(column)

select(condition)

open()

execute()
fetch()

close()

getColumn(column)

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 6

2 Frameworks

MONDO
The MONDO framework does not promote any particular standard for the storage of meta-data but proposes a frame-
work within which this information can be used to build object-oriented systems. Reference versions of MONDO in
fact use a combination of SGML/XML and OML (Object Modelling Language).

MONDO emphasises the difference between what it calls recipes and domain objects. The recipe is crucially a simple
text file which encodes the information necessary to build a domain object. However, the recipe doesn’t completely
determine the resulting domain object. An analogy is drawn with the way a chef uses a real recipe. The recipe cer-
tainly defines what the dish will turn out to be, but the skill of the chef in interpreting the recipe is at least, if not more
important in determining the quality of the result. The chef corresponds to a procedure called the object builder which
is a particular class of object that knows how to interpret recipe data.

Each instruction, or element, of a recipe codes for a single domain object. Recipes may be hierarchically organised so
that instructions can be nested within each other. The building process returns a single object corresponding to the
top-level recipe, containing nested objects corresponding to the output of the builders for each sub-instruction.

Recipe
Instruction
Instruction

Instruction
Instruction

Instruction

The building process can be assisted by meta-data containing explicit links to implementation classes for distinct types
of entity in the domain model. The example below associates a particular class MyDate with the Date type. Note that
the syntax, though similar to XML is actually OML.

<Implementation
type = “Date”
class = <Class

name = “MyDate” version = 1.0
bytecodes = <Binary encoding= “hex” data= “cafebabe…”>

>>

The building process can be reversed if the domain object supports introspective processes which can be used to gener-
ate a recipe which can later be used to reconstruct the object.

Recipe Domain
object

Object
builder

Object
encoder

The concepts found in MONDO are remarkably close to the ideas in currency for the representation of profiles using
some meta-data language, and their relationship to profile objects within an object oriented system. While the
MONDO framework may not be used explicitly, it can still be seen in spirit.

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 7

Document Object Model
The Document Object Model, designed by the W3C DOM working group, is a programmatic interface to the contents
of a document. The API is introduced on two levels.

Level 0

This level provides a basic interface for HTML and XML documents as might be generated by a non-validating parser.
A document defines a tree of objects corresponding to the nesting of markup tags within the document text. The nodes
which can be found in this tree are as follows.

Document
The entire HTML or XML document. Contains a root element.
eg. For an HTML document this is the html tag:- <html>...</html>

Element
A tagged element containing a number of attributes and sub-nodes.
eg. The head element contains a title sub-node:- <head> <title>Document Object Model</title> </head>

Attribute
A named value specified in the opening tag.
eg. A white bgcolor is an attribute of the body element:- <body bgcolor=#ffffff> ... </bgcolor>

Text
Plain text containing no markup.
eg. The text "Document Object Model" of <title>Document Object Model</title>

Comment
plain text comment.
eg. <!-- Gort, Klaatu Birada Niktoh -->

PI
This is a processing instruction intended for the document parser.
eg. <?XML version=1.0 ?>

In addition to methods for accessing data specific to each class of node, each of these inherits from an abstract Node
class which provides basic functionality to navigate up and down the tree.

Level 1

HTML

This level corresponds to the access a scripting language such as JavaScript or VBScript would have to the HTML
document it resides within. The root Document node procides the functionality of JavaScript's Document object. This
includes short-cuts to forms and images which are held in arrays as immediate properties of the Document. Among the
attributes defined by the generic HTMLElement are event handler strings such as 'onClick' and 'onKeyDown', which
define an action to be taken (a script) on a given user event. A separate get and set style interface (ie. similar to the
Java Beans pattern) exists for access to documents from Java.

XML

While the HTML DOM specification can be defined for a fixed set of markup tags, the XML interface must be exten-
sible. XML documents may be defined with respect to a Document Type Definition (DTD) which specifies additional
rules for determining if an XML document is well formed. This information is accessible via the DocumentType in-
terface.

A standard interface at this level is essential for the commercial adoption of XML parsers, and will be invaluable in

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 8

the drive towards a cross-language scripting architecture.

Conclusions
The XML language is emerging as a standard for representing profile data. By conforming to these standards we in-
crease the chances of re-using and exploiting individual components of the followMe system. The aim is to design a
core set of properties appropriate to the followMe pilot domains, and to implement the appropriate profile classes.

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 9

References
ChiMu Corporation, MONDO, <http://www.chimu.com/projects/mondo>

The DARPA knowledge Sharing Effort, <http://logic.stanford.edu/sharing/knowledge.html>

Guha R.V., Meta-Content Framework Using XML, <http://www.w3.org/TR/NOTE-MCF-XML-970624/>, June 97

Microsoft, Specs & Standards, <http://www.microsoft.com/standards/xml/>

Versit Consortium, vCard: The Electronic Business Card, <http://www.imc.org/pdi>, January 1997

Stuart Weibel et al, OCLC/NCSA Metadata Workshop Report,
<http://www.oclc.org:5046/oclc/research/publications/weibel/metadata/dublin_core_report.html>, March 1995

W3C, Document Object Model, <http://www.w3.org/DOM>, December 1997

W3C, Extensible Markup Language (XML), <http://www.w3.org/TR/WD-xml-970807>, August 1997

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 10

Appendices

The conventions used in these appendices are as follows.

For property listings (appendices 1 and 2):
Property tags are listed in the leftmost column.
Tag Attributes are listed below the tag in the second column in UPPER-CASE.
Tag Sub-elements are listed below the tag in the second column.
Descriptions of tags and attributes appear in the third column.
Values between braces {} indicate possible attribute assignments.

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 11

Appendix 1: vCard properties
Identification properties:
FN Formatted name formatted for display
N Structured representation of name

Family Family name
First Given name
Middle Additional names
Prefix
Suffix

PHOTO Photograph of an individual
TYPE One of {GIF, TIFF, JPEG, ..}

BDAY Birthdate (ISO 8601)
SOUND Audio or phonetic representation of name

TYPE One of {WAVE, PCM, AIFF, ...}
URL Source of additional personal information
UID Globally unique identifier

Delivery addressing properties:
ADR Address (based on X.520 PO Box attribute)

TYPE One or more of {DOM, INTL, POSTAL, PARCEL, HOME, WORK}
Street Street address
Locality City
Region State/province
Postal Code
CountryName

LABEL Delivery address (based on X.520 Postal address)
TYPE One or more of {DOM, INTL, POSTAL, PARCEL, HOME, WORK}

Telecommunications addressing properties:
TEL Telephone number

TYPE One or more of {PREF, WORK, HOME, VOICE, FAX, … }
EMAIL Electronic mail

TYPE One of {AOL, CIS, SMTP, ...}
MAILER email software

Geographical properties:
TZ Time Zone (ISO 8601), offset from UTC
GEO Geographic position (latitude, longitude)

Organisational properties:
TITLE Job title (based on X.520 title)
ROLE (based on X.520 Busines Category explanatory)
LOGO Logo image

TYPE One of {GIF, TIFF, JPEG, ..}
AGENT separately addressable agent
ORG (based on X.520 Organisation name attribute)

Name Organisation name
Unit Organisation unit

Explanatory properties:
NOTE Comment (based on X.520 description)
REV Last revision (ISO 8601)
VERSION vCard version number

Security properties:
KEY Public encryption key

TYPE One of {X509, PGP, ...}

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 12

Appendix 2: vCalendar properties
LANGUAGE String consistent with RFC 1766
DAYLIGHT Daylight savings rule
GEO Geographic position (latitude, longitude)
PRODID Product identifier, calendar creator
TZ Time Zone (ISO 8601), offset from UTC
VERSION vCalendar version number
ATTACH object reference for an event
ATTENDEE an individual associated with an event

Role One of {ATTENDEE, ORGANISER, OWNER, DELEGATE}
Status One of {ACCEPTED, NEEDS ACTION, SENT, TENTATIVE, CONFIRMED,

 DECLINED, COMPLETED, DELEGATED}
RSVP One of {YES, NO}
Expect One of {FYI (for your info), REQUIRE, REQUEST, IMMEDIATE}

AALARM Audio alarm
TYPE One of {PCM, WAVE, AIFF}

CATEGORIES Define a vCalendar category
CLASS Classification of access rights

TYPE One of {PUBLIC, PRIVATE, CONFIDENTIAL}
DCREATED Creation date of a given calendar entry
COMPLETED The time a scheduled `to do' was actually completed
DESCRIPTION Long comments
DALARM Pop up alarm

Run time The time to execute the alarm
Snooze time Time the alarm is dormant before repeat alarm
Repeat count Number of times the alarm is to be repeated
Display string The text to be displayed when the alarm is executed

DUE The date/time a `to do' is due to be completed
DTEND The date/time an event will end
EXDATE Specific date/time exceptions for a recurring action
EXRULE General recurrence rule for exceptions
LAST-MODIFIED The date/time a calendar entry was last modified
LOCATION The location of a calendar entry e.g. a meeting room
MALARM email alarm

Run time The time to execute the alarm
Snooze time Time the alarm is dormant before repeat alarm
Repeat count Number of times the alarm is to be repeated
Email address Destination of the alarm
Note The text to be sent when the alarm is executed

RNUM The number of times a calendar entry will reoccur
PRIORITY Numeric priority for a calendar entry
PALARM Invoke procedure on alarm

Run time The time to execute the alarm
Snooze time Time the alarm is dormant before repeat alarm
Repeat count Number of times the alarm is to be repeated
Procedure name destination of the alarm

RELATED-TO Reference to another calendar entry
RDATE Specifically recurring date/times for a calendar entry
RRULE General recurrence rule for a calendar entry
RESOURCES Resources required in a calendar entry
SEQUENCE The instance of a calendar entry in a sequence of revisions
DTSTART The date/time an event will start
SUMMARY Short comment
TRANSP Transparent to free time searches
URL Uniform Resource Locator
UID Globally unique identifier

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 13

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 14

Appendix 3: Example XML profile based on vCard properties
<?XML version= “1.0”>
<!DOCTYPE profile SYSTEM “Profile.dtd”>

<!-- Profile data based on vCard 2.1 properties -->
<Profile>
 <!-- Identification -->
 <!-- Formatted Name: for display -->
 <FN>Dr. Steve Battle</FN>
 <!-- Name: structured representation -->
 <N>
 <Family>Battle</Family>
 <First>Steven</First>
 <Middle>Andrew</Middle>
 < Prefix>Dr.</ Prefix>
 </N>
 <!-- Birthdate --><BDAY>1963-06-06</BDAY>

 <!-- Delivery Addressing -->
 <ADR TYPE ="WORK">
 <!-- note optional way to specify empty tags -->
 <POAddr/>
 <ExtAddr>UWE</ExtAddr>
 <Street>Coldharbour Lane, Frenchay</Street>
 <Locality>Bristol</Locality>
 <Region>South Gloucestershire</Region>
 <PostalCode>BS16 1QY</PostalCode>
 <CountryName>United Kingdom</CountryName>
 </ADR>

 <!-- Telecommunications Addressing -->
 <TEL TYPE ="WORK">+44-117-965-6261x3177</TEL>
 <TEL TYPE ="FAX">+44-117-975-0416</TEL>
 <EMAIL>sab@ics.uwe.ac.uk</EMAIL>

 <!-- Geographical -->
 <!-- Time Zone in Universal Coordinated Time (GMT) -->
 <TZ>0000</TZ>
 <!-- Geographic Position (degrees.minutes N/S,E/W as -/+) -->
 <GEO>51.47,-2.58</GEO>

 <!-- Organisational -->
 <TITLE>Researcher</TITLE>
 <LOGO TYPE=“GIF” HREF=“http://zen.btc.uwe.ac.uk/icons/hilogo2.gif”/>
 <ORG>
 < Name>The University of the West of England</ Name>
 < Unit>The Intelligent Computer Systems Centre</ Unit>
 </ORG>

 <!-- Explanatory -->
 <REV>1997-11-28T12:00:00Z</REV> <!-- Last revision -->
 <URL>http://www.ics.uwe.ac.uk/staff/Steve.html</URL>

</Profile>

 ID: DE1Survey ESPRIT Project N. 25 338 - FollowMe

19/01/98 Work package E 15

Appendix 4: Document Type Declaration (DTD)
The file Profile.dtd is defined as:

<!ELEMENT Profile
 (FN, N, PHOTO?, BDAY?, SOUND?, URL?, UID?, ADR?, LABEL?, TEL?, EMAIL?, MAILER?, TZ?, GEO?,
 TITLE?, ROLE?, LOGO?, AGENT?, ORG?, NOTE?, REV?, VERSION?, KEY?)>

<!ELEMENT FN (#PCDATA) >
<!ELEMENT N (Family, First?, Middle?, Prefix, Suffix?)>
<!ELEMENT PHOTO (#PCDATA) >
<!ATTLIST PHOTO
 TYPE (GIF|CGM|WMF|BMP|MET|PMB|DIB|PICT|TIFF|PS|PDF|JPEG|MPEG|MPEG2|AVI|QTIME) #IMPLIED
 HREF CDATA #IMPLIED>
<!ELEMENT BDAY (#PCDATA) >
<!ELEMENT SOUND (#PCDATA) >
<!ATTLIST SOUND Type (WAVE|PCM|AIFF) #IMPLIED>
<!ELEMENT URL (#PCDATA) >
<!ELEMENT UID (#PCDATA) >
<!ELEMENT ADR (Street, Locality, Region?, PostalCode?, CountryName?)>
<!ATTLIST ADR Type CDATA #IMPLIED>
<!ELEMENT LABEL (#PCDATA) >
<!ATTLIST LABEL Type CDATA #IMPLIED>
<!ELEMENT TEL (#PCDATA) >
<!ATTLIST TEL Type CDATA #IMPLIED>
<!ELEMENT EMAIL TYPE
 (AOL|AppleLink|ATTMail|CIS|eWorld|INTERNET|IBMMail|MCIMail|POWERSHARE|PRODIGY|TLX|X400)
 #IMPLIED>
<!ELEMENT MAILER (#PCDATA) >
<!ELEMENT TZ (#PCDATA) >
<!ELEMENT GEO (#PCDATA) >
<!ELEMENT TITLE (#PCDATA) >
<!ELEMENT ROLE (#PCDATA) >
<!ELEMENT LOGO (#PCDATA) >
<!ATTLIST LOGO
 TYPE (GIF|CGM|WMF|BMP|MET|PMB|DIB|PICT|TIFF|PS|PDF|JPEG|MPEG|MPEG2|AVI|QTIME) #IMPLIED>
<!ELEMENT AGENT (Profile)>
<!ELEMENT ORG (Name, Unit?)>
<!ELEMENT NOTE (#PCDATA) >
<!ELEMENT REV (#PCDATA) >
<!ELEMENT VERSION (#PCDATA) >
<!ELEMENT KEY (#PCDATA) >
<!ATTLIST TYPE (X509|PGP) #IMPLIED>

<!ELEMENT Family (#PCDATA) >
<!ELEMENT First (#PCDATA) >
<!ELEMENT Middle (#PCDATA) >
<!ELEMENT Prefix (#PCDATA) >
<!ELEMENT Suffix (#PCDATA) >
<!ELEMENT Street (#PCDATA) >
<!ELEMENT Locality (#PCDATA) >
<!ELEMENT Region (#PCDATA) >
<!ELEMENT PostalCode (#PCDATA) >
<!ELEMENT CountryName (#PCDATA) >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT Unit (#PCDATA) >

