
ESPRIT Project No. 25 338

Work packages D,E,F

Agent Framework

Technical Summary

ID: Document-Name V. 1.0 Date: 23-Mar-99

Author(s): SAB Status: draft

Reviewer(s): Distribution:

Change History

Document Code Change Description Author Date

Technical summary First version of document. SAB 23-Mar-99

 ID: Technical Summary ESPRIT Project No. 25 338 - FollowMe

23.03.99 Work packages D,E,F – Agent Framework Page i

AGENT FRAMEWORK: TECHNICAL SUMMARY 1

 ID: Technical Summary ESPRIT Project No. 25 338 - FollowMe

23/03/99 Work package X Page 1

Agent Framework: Technical Summary

The Agent Framework is composed of three major work-packages. These are the Autonomous
Agents work-package which deals with agent functionality, the Personal Profiles work-package for
modelling user data, and the Service interaction work package which provides support for agent
interaction with services. This technical overview re-iterates the requirements of each work package
and covers the principal scenarios actually implemented.

I. Autonomous Agents
The aim of this work-package was to allow users to create and run their own agents, and to manage the use of agent-
places, all within the context of the mobile-object work-bench (MOW). A high-level domain model covering the main
components of this work is shown below.

Personal Assistant
The PA is the main point of contact for the user, and may be thought of as a kind of personal secretary. The PA is an
agent specialised for this purpose alone. The user interface to the PA is separated from the PA functionality itself,
enabling alternative interfaces compliant with User Access to be devised. The PA provides access to the user’s private
information space and to the trader which is used as a mission repository.

Document Profile
(from PP)

Diary
(from PP)

InformationSpace
(from IS)

contains

PersonalAssistant

Trader
(from SI)

Mission

contains

browses

browses

AgentPlace

location

XML

TaskAgent

location

lists

Script

declares

specifies

component componentcontains

 ID: Technical Summary ESPRIT Project No. 25 338 - FollowMe

23/03/99 Work package X Page 2

Task Agent
The task agent is a general-purpose agent which may be configured by providing it with mission on its creation. The
PA maintains a reference to all task agents throughout their lifetimes. TA’s may move between agent places as de-
termined by their missions.

Agent Place
An agent place extends the basic idea of place from the MOW. Agent places provide an administrative interface which
allows the owner of that place to monitor, and kill, resident agents, and to create Personal Assistants for new users.

Mission
A mission is defined by an XML (eXtensible Markup Language) file and defines the behaviour of a task agent.A mis-
sion is composed of a number of textual elements which define the components that make up the agent when it is first
created. The remaining domain classes listed below may all be used as mission elements. The mission also defines the
mapping rules which associate these mission elements with appropriate Java implementations.

Script
The agent programmer is shielded from the complexities of Java and the MOW by using the JavaScript scripting lan-
guage (formalised as ECMAScript). To provide support for mobility, the script interpreter was written so that it’s
entire runtime state could be saved as a serialisable object.

XML
Whereas the aim of the personal-profile work package was to capture generic personal information, there is also the
need to represent application specific data within an agent. The extensibility of XML allows new elements to be added
to the language as long as they follow a standard markup syntax. The classes that implement this application specific
XML present the agent script with a standard programmatic interface to this data (a document object model).

Document
Documents implement the User Access Document interface, and so are the standard components for all communica-
tion between the agent and the user. Each document is associated with a set of style rules defined in XSL, which may
be applied to the document, rendering it in HTML. Documents support two-way communication using standard
HTML form components such as buttons and text inputs. Documents representing different pages may be hyper-
linked together to build sophisticated user interfaces.

The main use-cases implemented as part of this work-package are as follows. Additional actors involved are the Users
who interact with their Personal Assistant, and the Administrator who looks after an agent place:

Manage agent place
The role of administrator includes starting-up and shutting-down agent places. While an agent place is active, the
administrator oversees the agents resident within that place and may opt to kill them if they are acting antisocially.

Create Personal Assistant
Another administrative role is to create Personal Assistants for new users. Each personal assistant is created with its
own private information space, where the user may store their personal data and other documents. The PA is regis-
tered with the trader so that it may be located by the user later on.

Contact Personal Assistant
Before the user can interact with their agents, they must locate their PA and create an interface to interact with it. This
work-package supplies a Java based interface to perform these functions.

Move Personal Assistant
Once contact with the PA is established, the user may move their PA to a different location. This may be required, for
example, if the original agent place must be shut-down.

Browse information space

 ID: Technical Summary ESPRIT Project No. 25 338 - FollowMe

23/03/99 Work package X Page 3

The PA enables the user to search their information space so that they may edit their personal data, or read reports
sent back by agents. The viewer presents the information space as a collection of nested folders, and selecting any of
the contents will activate the appropriate application.

Launch task agent
Launching a task agent involves browsing the trader for the required mission. Missions may be selected by the user
and edited, or launched directly. A new sub-space is created within the PA’s own information space which may be
used as a work-space by the new task agent. The task agent is also supplied with references to the trader and the PA
itself.

Task agent contacts user
At any time after launch, the agent may contact the user via the PA. The agent sends an interactive document that may
source events to be picked up by an agent script. The task agent might define a ‘splash’ screen to be sent to the user
immediately after launch to gather additional configuration information.

User contacts agent
The PA maintains a list of active agents; agents the user has launched which have not yet terminated. The user may
select any agent from this list to initiate a dialogue with the agent at its remote location. This kind of interaction is
only possible if the agent defines a ‘contact’ operation which returns a document. The functions the user may select
from this document are therefore application specific.

Agent reports to user
In many cases a fully interactive agent/user dialogue is not required. The agent simply needs to send a set of results
back to the user. In these cases it is not necessary for the user to look at the results immediately. On receipt of the
document the PA makes an attempt to locate the user by consulting the personal diary, searching for any current con-
tact details. If the user cannot be contacted, the results are held in the information space where they may be read later.

Agent jumps to new location
The task agent may move to a new location by issuing a ‘jump’ command. The effect of this is to suspend the running
of all mission components, including the script interpreter. Each component is responsible for saving its state ready for
resumption of activity when it arrives. The jump thus hides the problems of thread suspension from the agent-
programmer.

II. Personal Profiles
The function of this work-package is the storage and management of personal information. This information is very
generic and may be used across many applications. It was decided early on to implement a personal profile and per-
sonal diary based on the vCard and vCalendar standards. It was necessary to convert these standards into an XML
format so they could be manipulated with a standard set of tools. The profile and diary are containers for a number of
specific types of data outlined in the domain model below.

Identification

Addressing

Communication

Organisational

Profile

Journal

Diary

Event

Alarm

ToDo

 ID: Technical Summary ESPRIT Project No. 25 338 - FollowMe

23/03/99 Work package X Page 4

Profile
A personal profile is a container for personal information. The profile may be loaded and saved in an XML format, but
while in the information space the profile is implemented as a Java object. The design of the profile introduces a
markup level design pattern in which we represent the same information in both structured and unstructured forms.
For example, the user name is represented in an unstructured printable format, and additionally the same name may be
broken down into its separate components such as title, forename, surname, etc.

Identification properties
The user may be identified by name.

Addressing properties
This represents the mail addresses at which the user may live or work.

Communication properties
This section aims to cover the major forms of electronic communication, such as telephone, fax, pager, email. The
user may specify a number of communication forms for home and work.

Organisational properties
These properties reflect the kind of information found on your business card, including the name of the organisation
you work for, and your role within that organisation.

Diary
The diary is a container for time-dependent information. The content of the diary may be loaded and saved in XML.
The diary differs from the profile in that it is an active object able to source events which may be received by agents.
The main technical challenge with the diary was to introduce mobility without ‘dropping’ any events that might occur
in transit. In addition, the diary has to cope with moving between machines with clocks in different time zones, and
which cannot (according to Einstein) be guaranteed to be ‘synchronized’ with respect to each other.

Alarm
An alarm denotes a particular point in time in the future, and may be set to repeat at regular intervals. Additional
information about the reason for the alarm, may be provided by Event and ToDo elements.

Event
An event signifies a particular period of time during which the user may be occupied. For example, the user may be
attending a meeting. The Event may be associated with an alarm which can be used as a reminder for the event. The
event may also describe contact details which are valid for the duration of the event which can be used by an agent to
get in touch with the user.

Journal
A journal entry is a time-stamped historical record. Agents may use journal entries to log their activity so the user can
gain an idea of their progress in a task.

ToDo
A to-do entry describes an action to be performed at some point in the future. Used in conjunction with an alarm, the
to-do entry provides additional information about why the alarm was raised.

Use-cases associated with the Personal Profiles work-package include the following:

Edit profile
We distinguish between a personal profile, and profile on the basis of usage. In itself a profile object may be used to
store personal information. The term ‘personal profile’ designates a central profile object stored in the information

 ID: Technical Summary ESPRIT Project No. 25 338 - FollowMe

23/03/99 Work package X Page 5

space. In normal use this personal profile is edited only by the user, however additional profile objects may be instanti-
ated by task agents and accessed locally.

Edit diary
We distinguish between a personal diary, and diary on the basis of usage. The term ‘personal diary’ designates a cen-
tral diary object stored in the information space. The user will use this diary to store information about their own
whereabouts. Additional diary objects may be instantiated locally by task agents to schedule their own timed behaviour
and to log their activity in journal entries.

Consult profile
Task agents may consult the personal profile to gather information about the user they are working for. Agents per-
forming this activity are likely to be working in conjunction with some service that has requested user details; for
reasons of privacy, services are not able to access this information directly.

Consult diary
When a document is delivered to the Personal Assistant by a Task Agent, the PA may consult the personal diary to
look for contact details associated with a given event. The consultation may be initiated by the diary itself in response
to an alarm. For an alarm raised in the personal diary, the user may look for additional related information in the to-
do list.

III. Service Interaction
This work-package provides tools allowing agents to locate and use services.

Trader
The trader provides a common, well-known service for locating other services. The trader acts as an implementation
repository with which service offers may be registered. With appropriately defined context properties, the trader may
also act as an interface repository, storing additional meta-data about the interfaces available within a context in the
form of a service profile.

Service
The service itself is performed by a given service implementation, registered with the trader by a service provider. The
service implementation must conform to the service interface associated with the context. The details of the service
interface are reflected in the service profile.

Context
Service offers are organised within contexts. Each context defines a number of properties which may be displayed by
each service offer within that context, and provide the basis on which a client may choose a given offer. For example,
a property may associate a name with a given service. Personal Assistants are registered within a context that also

ServiceInterface
<<Interface>>

ServiceProfile

Trader Contextdefines

defines

Service

export offer within

TaskAgent
(from AA)

import offer

reads

uses

 ID: Technical Summary ESPRIT Project No. 25 338 - FollowMe

23/03/99 Work package X Page 6

includes their user name, so that the user may locate their PA even after it has moved. Contextual properties may be
updated by a service offer so as to reflect dynamic ‘quality of service’ features. Furthermore, contexts may be nested
within each other, allowing services to be organised within a simple ontology.

Service profile
The service profile is an XML description of the service signature stored within the service context. The signature may
be accessed dynamically by agents to perform type checking on structured XML data passed between the agent and
service. The signature also supports the dynamic construction and invocation of operations on the service. However,
the real value of the service signature lies in the fact that it documents the service interface in a way that is accessible
on-line to agent programmers.

The principal Service Interaction use-cases are as follows. A new role is introduced for the Service Provider:

Export service Offer
The service provider registers the service implementation with the Trader, wrapping it up with a number of associated
properties as a service offer. It is the responsibility of the service provider to maintain the service. While the service is
available, the provider may update any dynamic service properties to reflect the current status of the service. When the
service is no longer available, the offer should be explicitly removed from the Trader.

Import service offer
An agent, acting as a client of the service can request all the service offers within a given context. To be more selec-
tive, the agent is able to specify a number of constraints using a standard constraint language.

Interact with service
The task agent may interact with simple stateless service by invoking operations directly on the offer returned by the
Trader. The Service Interaction work-package looks at a number of typical interaction scenarios; by a stateless service,
we mean one where operations from any number of clients may be interleaved without error. More complex scenarios
including two-way interactions may be constructed by defining additional interfaces within the service profile.

