
ESPRIT Project No. 25 338

Work package C

Information Space

Software Report DC 4, 5.2, 6.3

ID: InformationSpace DC4, 5.2, 6.3 Date: 17.8.98

Author(s): Douglas Donaldson, Richard Hayton,
APM

Status: Unreviewed

Reviewer(s): Distribution: Project Confidential





Change History

Document Code Change Description Author Date

InformationSpace InformationSpace DC 1, 2, 3 and 6.1. No changes. Donaldson, APM 31.3.98

InformationSpace Update for DC4 and 6.3. Donaldson, APM 17.8.98

InformationSpace Update for DC5.2 Hayton, APM 15.10.98



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page i

1. INTRODUCTION 1

2. DESIGN 3

2.1 Underlying Storage 4

3. USER AUTHENTICATION 5

3.1 Introduction 5

3.2 Approach 5

3.3 SSL 5

3.4 User Administration 6

3.5 Three Tier Systems 6

4. COMPONENTS 7

4.1 StoreFactoryImpl 7

4.2 StoreImpl 7

4.3 DirectoryImpl 8

4.4 StorableManagerImpl 9

5. USING THE IS 10

5.1 Black 10

5.2 White 10



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 1

1. Introduction

This document describes the release of the FollowMe WorkPackage C, InformationSpace (IS), of June 1998. This soft-
ware was released to the FollowMe project together with a release of WorkPackage B, Mobile Object Workbench
(MOW), as MOW2.0. The software and this report constitute deliverables DC4 (Object Sharer software, known as
White Box Storables), DC5.2 (Software) and DC6.3 (Software Report).

This software description assumes familiarity with:

• The FlexiNet concepts which underpin the MOW and IS.

• The MOW and IS concepts of Cluster, Capsule and Nucleus.

• Deliverables DC1, 2, 3 and 6.1 which describe the requirements, motivation and design rationale, and the key inter-
faces. It also describes some early implementations of IS components.

1.1 Interfaces

The key external interfaces to the IS are

• StoreFactory (called StoreManager in DC6.1) offersÿþýüûúùþ andùþ�ú�þ methods for creating and destroying
Stores. A store is a receptacle for storable objects, typically objects that are to be managed as a collection (for ex-
ample objects belonging to one user).

• Store encapsulates a set of Storables. Storables are stored objects (or groups of objects). Each storable is associated
with a directory entry, primarily for management purposes. A storable may be accessed via its directory entry, or
more usually, via an interface reference returned upon its creation. The Store interface has only one significant
method,�þû�úúû��ùþ�ûúù� . All stores and directories are reachable from this.

• Directory offers methods for creating and destroying Storables. Its methods can be grouped into three groups:

• ‘Black box’ storable methods (�ú���ÿûú , �úú����ú�� , etc.), for copying objects by value into and out of the
Directory. These methods are analogous to file operations.

• ‘White box’ storable methods (ÿþýüûúù���þ , �úú���üûúù���þ , etc.), for creating empty Storable Clusters. A
‘white box’ storable istransparentlypersistent. That is to say that the creator is passed a reference to (an inter-
face on) an object within the storable, and may the access it as it it were a local java object. This reference may
be passed to other clients, or even stored within other storables. The fact that the object is both remote and per-
sistant is make transparent.

• Directory methods (ÿþý��ùþ�ûúù� , �úú�����ùþ�ûúù� , �þû��ùþÿû , etc.), for creating and managing a hierar-
chy of Directories.

• Storable is the management interface of a Storable, and includes operations such as�ú�� and �þ�ûùú� .



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 2

Figure 1 shows the relations between these classes. See the extensive JavaDoc in the code for a full description of these
interfaces.

StoreManager
Disk

Store

0-n

1creates and names

Storable0-n

1

owned and managed by

Directory

0-n
creates and names

1

1

0-n

parent

child

Figure 1. Class Diagram of Stores, Directories and Storable Objects.



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 3

2. Design

The design of the IS conforms to the Nucleus, Cluster and Capsule model of FlexiNet and the MOW.

There are three levels of grouping. Each StoreFactory manages a number of Stores. Each Store manages a number of
Storables, and each Storable contains a number of separate objects. Working in reverse, the objects that constitute one
Storable must be kept separate from those in other Storables, both for security reasons, and in order to identify a bound-
ary for persistence. Storables therefore correspond to the FlexiNet (and ODP) notion of a cluster. Stores are conse-
quently factories for Storables, i.e. Capsules in FlexiNet/ODP terms. The StoreFactory, as a Factory for Stores is an
ODP Nucleus. In FlexiNet terms, this is just another capsule.

StoreFactory

Store

Storable

Storable

Storable

Store
Storable

Storable

Object

Cluster

Capsule

Nucleus StoreFactory

Figure 2 Stores and Storables

Each cluster is encapsulated so that it may be treated as a unit. In practical terms, this means that no objects are shared
between clusters, and the Cluster abstraction therefore defines a boundary that may be used when serialising a Storable
to disk.

At a computational level, clusters and capsules communicate with each other, and with remote clients via location trans-
parent communication. In Engineering terms, this is achieved by each Cluster and Capsule having a separate ‘Cluster-
Comms’ communications system managing its personal set of imported and exported references. It would be inefficient
for each ClusterComms to be implemented entirely separately, so to allow sharing, all the ClusterComms within a cap-
sule are multiplexed over a CapsuleComms, which manages low level communication, such as access to the network,
and multiplexing. In an insecure implementation, different capsules may also share the same CapsuleComms, however in
a secure implementation, where each store is ‘owned’ by a different client, it is more robust, and straightforward for



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 4

each capsule to have a separate CapsuleComms. Capsules are therefore entirely separate from each other (and may even
reside in different processes or on different physical machines). In addition to the ClusterComms and CapsuleComms,
the other related Engineering component is the ClusterManager. This is a management object with each Cluster, which
provides two management interfaces, a public interface for initialising a Cluster and a private interface for use by the
Capsule. In the case of a Storable, these interfaces are Storable and StorableManager respectively. Figure 3 gives a more
detailed view of the internal relationship between a store and its Storables.

Store

Storable

Storable

Store

Storable

Storable

Store

Storable

Storable

CapsuleComms CapsuleComms

ClusterComms

StoreableManger

Figure 3. Implementation of the Store and Storables.

2.1 Underlying Storage

The underlying storage is supplied by implementations of DataDirectory. The DataDirectory interface abstracts the
provision of storage for byte arrays. DataDirectory and the implementation above a file system, FSDirectory, are de-
scribed in DC6.1.



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 5

3. User Authentication

3.1 Introduction

If the information space is used to store Storables containing private or personal information, then access to it must be
controlled. Without suitable mechanisms, a third party might misrepresent themselves as a particular user in order to
gain access to private information, or may eavesdrop on the communication between a Store and a client and thus gain
illicit access.

The original specification of the Information Space given in the Technical Annex was of apersonalinformation space,
used to store personal information. Although the design of the Information Space has widened in scope, to include in-
formation that is not user-specific, this remains the primary area of concern for IS security.

3.2 Approach

As has been hinted in the previous section, the Store concept is a useful grouping abstraction for Storables that are to be
managed as a unit. We envisage that each user will be allocated one or more Stores, and that user authentication is there-
fore best tackled on a per-store basis. This has a number of advantages

• The model is straightforward for both users and administrators

• The overhead of creating individual Storables is kept small, as authentication is tackled at a courser granularity

• Storables for different users can be managed by the same process

• It fits the expected use of the IS by other workpackages – only a user’s Personal Assistant will access Storables
within their information space

3.3 SSL

The mechanism used for authentication is based on the SSL protocol (secure socket layer). As each Store has a separate
communications stack, each may have a different access policy controlling the credentials a client needs in order to
connect. Forpersonalinformation, we this policy will allow only client who have been granted a certificate relating to a
particular user to connect. In engineering terms, the ‘Crimson’ FlexiNet binder provides an SSL-based communications
stack, and this is used in both the client and the server to effect an authenticated communication channel between client
and server. This is illustrated in Figure 4. Once the storable has been configured to use a particular access policy, and
the client has been given access to an appropriate Authentication Certificate, the authentication (and optionally encryp-
tion) process is entirely transparent to both client and storable.



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 6

User's
Process Storable

StorableStore

Access
Policy

SSL
Comms
Stack

Authentication
CertificateSSL

Comms
Stack

Figure 4 Authenticated Communication

3.4 User Administration

User administration is outside the scope of the Information Space. However, a stand-alone program is provided to act as
a certificate authority and generate User authentication certificates. These must be securely transferred to client proc-
esses, as it is the clients' possession of these certificates that it actually authenticated. In order to allow more complex
security policies, such as pre-storable access control, each certificates contains an additional ‘user id’. The user id re-
lated to a particular call may be examined from within the ClusterComms, which may then make block or allow the
access based on its own policy.

3.5 Three Tier Systems

It is likely that a single process may wish to act with the authority of a number of different users. For example, users may
login to a service that then acts on their behalf to access stores and other FollowMe components. This ‘middle-tier’
service will need to act as a number of different users, and keep certificates (and information) related to these users
separate. Within FlexiNet, clusters provide the ideal abstraction for achieving this, as each may be given its own com-
munications infrastructure, and SSL certificates. In addition, the encapsulation provided by the cluster will ensure that
an authenticated communications channel to a service for use by user A is not accidentally passed to the code managing
user B.



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 7

4. Components

4.1 StoreFactoryImpl

A StoreFactoryImpl keeps information about the StoreImpls it has created. The information needed to recreate the Store
after a crash is held in a MetaStoreFactory object, saved as a black box storable in the StoreFactory’s Directory. This
Directory is independent from the Stores’ Directory hierarchies. The MetaStoreFactory object is saved under the name
storename.msf. The information needed for efficient lookup of Stores created is held in a Hashtable of StoreFactoryEn-
tries, hashed by Store name.

The principle subtlety in the implementation of StoreFactoryImpl is the need to create new Stores in their own Capsule,
preventing sharing of any Java objects between the StoreFactory Capsule and the Store Capsules.

The implementation of newStore checks for the existence of astorenameDirectory andstorename.msf object. If they
exist, the Store is recreated based on the previously saved parameters. (This is used for restart after failure.) If the store
really doesn’t exist already, then an appropriate root directory is created and�ÿ�ûüûúùþ is called to initialize a new
capsule for the store.�ÿ�û�ûúùþ ‘wraps’ the proto-capsule to isolate it from the rest of the system, and to turn it into a
true capsule, thereby preventing the accidental sharing of objects between capsules. The wrap operation returns an inter-
face to the capsule of type StoreManager. Once wrapped,üûúùþ��ÿ��þù��ÿ�û may be called to initialise the capsule.

Note that a similar wrapping process in undergone to wrap the StoreFactoryImpl itself, however this is slightly simpli-
fied as the StoreFactoryImpl is the only capsule (at that time) so does not need to be encapsulated from anything else.

4.2 StoreImpl

StoreImpl is the Store capsule implementation. It performs several roles, which are separately defined in the interfaces it
implements.

• As a CapsuleManager, its behaviour is inherited from CapsuleManagerImp.

• As a StoreManager it allows StoreFactory to initialise and destroy it.

• As a Store, external Clients can gain access to its Directory hierarchy.

• As a PartNameHandler, it restores Storables that have not yet been loaded from disc.

• As a PartNameHandler, it restores Directories that have not yet been loaded from disc.

• As an XStore, it offers back door services to its Directories.

Similarly to a StoreFactoryImpl, it keeps information about the Storables and Directories within it. This is held in a
MetaStore object, saved as a black box storable in the Store’s meta Directory. This is a Directory just for this purpose,



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 8

which is independent from the Store’s Directory hierarchy. The MetaStoreFactory object is saved under the namestore-
name.mst. (The StoreFactoryImpl actually initialises the StoreImpl with a meta Directory that shares the same file sys-
tem directory as itself, so the StoreFactory’sstorename.msf meta information and the Store’sstorename.mst meta in-
formation appear in the same file system directory.)

The MetaStore object holds two mappings and their inverses, one from absolute Directory name to Directory interface
Id, and one from absolute Storable names to Cluster Address. (See the interface definition of Directory for a definition
of absolute names in a Directory hierarchy). These mappings allow Storables and Directories to be recreated at their old
addresses after a crash, whether they are looked up by name in a Directory, or referenced by a location and persistent
transparent object reference.

The MetaStore object is saved whenever it changes, that is whenever a white box Storable or Directory is created or
destroyed.

Similarly to a StoreFactoryImpl, the principle subtlety in the implementation of Store is the need to create new Storables
in their own Cluster. The StoreImpl asks its Capsule communications to ‘wrap’ a Storable with its own Cluster commu-
nications, getting back an encapsulated StorableManager interface. This interface is used for most communications with
the Storable. However, the StoreImpl needs to use the unwrapped StorableManager interface to bypass encapsulation
when a Storable is being destroyed. Similarly, the StorableManager uses an unwrapped XDirectory interface to its Di-
rectory for efficient access to the storage.

4.3 DirectoryImpl

DirectoryImpl relies on a DataDirectory object for creating sub Directories and storing Storables. It also keeps a
Hashtable of its black box Storable, white box Storable and sub Directory members, indexed by name.

It implements�ú���ÿûú of black box storables by serialising the object onto a buffer, then using the DataDirectory to
store the buffer’s byte array. Note that to obtain a deserialiser, the Directory needs to be given a reference to its Cluster
communications. This means that the Store should not be initialised to construct its root Directory until after it has been
wrapped with Capsule and Cluster communications. This is the case, as described in section 4.1, StoreFactoryImpl,
above.

It delegates implementation ofÿþýüûúù���þ , ùþ�ûúùþüûúù���þ andùþ�ú�þüûúù���þ to its Store, through the Store’s
XStore interface. StoreImpl implementsÿþýüûúù���þ by creating a new StorableManagerImpl, which is a manager for
an empty Storable Cluster (there is initially no application object inside it).

After creating, restoring or removing a sub Directory, Directory informs the Store, again through the Store’s XStore
interface. This allows the StoreImpl to keep its MetaStore information up to date.

DirectoryImpl prepends a byte to each Storable in its DataDirectory, signifying whether the Storable was copied in or a
white box object. This means that the Directory does not need to keep an extra meta information object in its DataDi-
rectory to signify this. The Directory can efficiently read the first byte of each Storable after a crash and work out which
are black box and which are white box objects.

Locking of Directory members is fairly complicated. Locking is needed in case two clients try and change a Directory
simultaneously, or try to access a white box Storable simultaneously. The locking needs to be at a fine granularity so that
independent members of a Directory can be accessed simultaneously.

A Directory creates a Lock for each of its members. The Lock for a white box Storable is shared with the Storable’s
StorableManager. This allows the StorableManager to lock the Storable from when method activity starts until after the
changed Storable has been stored. The Storable cannot be deleted in this interval. The Lock for a sub Directory is shared
with that Directory. This allows a parent to lock its child, remove all its members and then remove it.

When a Store is destroyed, or a Directory is recursively removed, the lock acquisition recurses down the Directory hier-
archy. The lock for a deleted object can be killed (moved to a dead state). Any waiting activity then fails to acquire the
lock, leading to an exception propagating back to the client.



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 9

4.4 StorableManagerImpl

StorableManagerImpl performs several roles, which are separately defined in the interfaces it implements.

• As a ClusterManager, its behaviour is inherited from ClusterManagerImp but changed to implement persistence
transparency.

• As a StorableManager it allows Stores to initialise and destroy it.

• As a Storable (an extension of Cluster), external Clients can create Objects and copy them to new Directories.

The persistence transparency is implemented inþÿ����� , called by the Cluster communications after a call to the Stor-
able has finished.�ÿ����� waits for thread activity in the Cluster’s ThreadGroup to finish, then stores the ClusterState.
The ClusterState is obtained from����ûþù��þû�úÿûþÿû� , and consists of the application object itself (possibly null),
the table of exported interfaces, and the distinguished interface on the application object returned after the application
object was initialised. This is precisely the information needed to restore the Storable after a crash. The StoreImpl keeps
the Storable’s cluster address in its MetaStore object, so the ClusterState table of exported interfaces only needs to map
the interfaces to their Ids. The work of restoring all the interfaces at their old identifiers is done by
����ûþù��þû�úÿûþÿû� .

The ClusterState is serialised into a buffer using a ClusterByValue serializer obtained from the Cluster communications.
This serialises the entire Cluster, not using the default FlexiNet semantics (objects serialised by value, interfaces serial-
ised by reference).

üû�ùû���� differs from ClusterManagerImp’s�û�ùû���� because it locks the Storable against other calls until after
þÿ����� has stored it. This allows theþÿ����� to wait for thread activity to finish, meaning that the Storable is in a
stable state to be stored.

The buffer used for the ClusterState is segmented, with a one-byte segment for the DirectoryImpl’s flag, and the rest for
the Storable. The StorableManagerImpl passes the buffer to the Directory using its XDirectory interface, and the Direc-
tory fills in the flag byte and saves the buffer’s byte array to its DataDirectory.



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 10

5. Using the IS

Example programs for using the IS are supplied in the MOW and IS release within sub directories of Flex-
iNet/TestCode/ISpace. The ReadMe.txt files in those directories describe the mechanics of compiling and running the
examples. Two of the examples are described here. The examples assume a StoreFactory is running and has exported its
Name for clients. In the absence of a Class Repository allowing the StoreFactory to dynamically load the Storables’
classes, the classes of Storables must be on the StoreFactory JVM’s Classpath.

5.1 Black

The Black Client

• Binds a variable called sman to a StoreFactory. This is done using a stringfied form of the StoreFactory’s Name,
obtained from the command line or from System Properties. It would be equally valid to use a trader such as
TrivTrader.

• Creates a Store using store = sman.newStore("store").

• Gets the RootDirectory of the Store using root = store.getRootDirectory().

• Copies an object by value (a String with the value “data”) into a Directory entry called “data” using
root.copyInto("data", "data").

• Looks up the object using result = (String) lookupCopy("data").

• Verifies that the result is “data”.

• Removes the Store using sman.remove("store").

The Black CopyClient creates two Stores and copies a black box Storable into the first Store, then copies the data from
the first Store to the second using root.copy("data", root2, "data2"). It then modifies the copy in root2 to verify that the
two copies are independent.

5.2 White

The White Client

• Binds sman, as for Black.

• Creates a Store using store = sman.newStore("store").

• Gets the RootDirectory of the Store using root = store.getRootDirectory().



InformationSpace ESPRIT Project No. 25 338 - FollowMe

17/8/98 WorkPackage C Page 11

• Creates an empty Storable in a Directory entry called “myAccount” using storable =
root.newStorable("myAccount").

• Creates a white box Storable object of class AccountImpl using tagged = storable.createObject(AccountImpl.class,
new Object[0]). The second parameter indicates that the AccountImpl’s init method expects no arguments.

• Retrieves the Account interface from the tagged using myAccount = (Account) tagged.iface().

• Performs credit, debit and balance invocations on the Account. The results transparently persist in the Store.

• Exits without cleaning up, to allow Client2 to bind to the Account independently.

The White Client2 demonstrates that the Account object persists even after the Store has been interrupted and restarted.
Client2:

• Binds sman, as for White Client.

• Looks up the Store using store = sman.lookup("store").

• Gets the RootDirectory of the Store using root = store.getRootDirectory().

• Looks up the white box Storable using tagged = root.lookupStorable("myAccount").

• Retrieves the Account interface from the tagged using myAccount = (Account) tagged.iface().

• Performs credit, debit and balance invocations on the Account and verifies that the results are consistent with the
expected persistent state. The results transparently persist in the Store.

• Exits.

The White CopyClient creates two Stores and a white box Storable, and copies the Storable from the first Store to the
second using tagged2 = storable.copy(root2, "myAccount2"). It then modifies the Storables to verify that the two are
independent.


