APM

FollowMe

Comparison of autonomous mobile agent
technologies

Takanori Ugai ,Michael Bursell

Abstract
Comparison between four different Java-based software agent technologies - Aglets (IBM), Kafka
(Fujitsu) , Voyager (ObjectSpace) and Odyssey (General Magic)

POSEIDON HOUSE ¢« CASTLE PARK « CAMBRIDGE CB3 ORD UNITED KINGDOM
+44 1223 515010 » Fax +44 1223 359779 « Email: apm@ansa.co.uk « URL: http://www.ansa.co.uk

Copyright © 1997 APM Limited

Distriby®@y 02.00 Approved 10 October, 1997

Supersedes: .
Superseded by: Technical Report

TABLE OF CONTENTS

1 AGENTS 1
1.1 Agents background 1
1.1 .1 Some agent resources 2
1.1.2 OMG MAF 2

1.1 .3 Other agent systems 5

1.2 Agents in Java 5
1.2.1 Terms 5

1.2 .2 FollowMe requirements 6

1.2 .3 Aglets background 7

1.2 .4 KAFKA background 8

1 .2 .5 Voyager background 8

1 .2 .6 Odyssey background 9

2 AGENT FEATURES 10
2 .1 MAF evaluation 10
2 .2 Aglet features 11
2 .2 .1 Environment 11

2 .2 .2 Security 11

2 .2 .3 ORBs and messaging 12

2 .2 .4 General 12

2 .2 .5 Methods 13

2 .3 KAFKA features 13
2.3 .1 Environment and security 13

2 .3 .2 ORBs and messaging 14

2 .3 .3 General 14

2 .3 .4 Methods 14

2 .4 Voyager features 15
2 .4 .1 Environment 15

2 .4 .2 Security 15

2 .4 .3 ORBs and messaging 15

2 .4 .4 General 16

2 .4 .5 Methods 16

2 .5 Odyssey features 16
2.5 .1 Environment and Security 16

2 .5 .2 ORBs and messaging 17

2 .5 .3 General 17

2 .5 .4 Methods 18

3 COMPARISON 19
3 .1 Feature comparison 19

Comparison of autonomous mobile agent technologies

MOTOS

LIST OF CONTENTS

3 .2 Other issues

4 CONCLUSION

4 .1 Aglets, KAFKA, Voyager or Odyssey for FollowMe?
4 .1 .1 Security
4.1 .2 ORB support
4 .1 .3 Availability, users and licensing
4 .1 .4 Final choice

5 REFERENCES
5.1 APM documents
5 .2 Worldwide Web pages
5 .3 Mailing lists

19

21

21
21
21
21
22

23
23
23
24

AGENTS

Agents background

Agent technology is a growing area of interest and research, and a number of
competing technologies are currently making their presence felt in the field.
In fact, there are a number of different definition of what constitutes an
agent. This paper is concerned with software agents, and, more specifically,
those that can be mobile - that is, move between execution environments on
different host machines on a network - and autonomous - that is, have some
control over their execution and movement.

We adopt, for the purposes of this document, part of the definition proposed
by OMG CFTF RFP3 in Section B2.4 Technical Issues.

“Agents are small to medium grained objects, they can move, and they can
start or stop their execution autonomously.”

Narrowing the field of interest still further, the discussion will focus on four
agent technologies which are implemented in the Java language. These four
technologies are - Aglets (from IBM Japan), Kafka (from Fujitsu, formally
called CHOAS), Voyager (from ObjectSpace) and Odyssey (from General
Magic) The reasons for the choice of these four specifically are -

1. they are available in the public domain

2. Java (their implementation language) is of particular interest as a means
of producing applications that can be executed on a variety of platforms.

3. dJava can provide access to system resources such as databases and other
processes on a host machine using methods such as Java Beans, RMI and
JDBC. This can also provide legacy access to non-Java systems.

Other Java-based agent systems are available, but the authors are not aware
of any others that are other than as research projects, and one of the aims of
this document is to provide information on technologies that are, or are
expected to become, commercially available.

Although the main focus of interest is, as stated above, on these technologies
in Java, questions of interoperability are do figure, and will be raised briefly
in the examination.

21-Oct-97

Comparison of autonomous mobile agent technologies 1

Some agent resources

The Agent Society - a “international industry and professional organization
established to assist in the widespread development and emergence of
intelligent agent technologies and markets” - is an excellent source of
information, on agents of all kinds, including intelligent and information
agents, as well as those of the autonomous, mobile kind addressed by this
document.

» Agent Society homepage - http://www.agent.org/

* Agent Standards Activities - http://www.agent.org/pub/standards.html
* Agent Events - http://www.agent.org/pub/events.html

» Agent Discussion Groups - http://www.agent.org/pub/discussions.html

The WWW Consortium also has some useful resources on agents and mobile
code -

e WWW Consortium homepage - http://www.w3.org/

W3C mobile code review -http://www.w3.org/pub/WWW/MobileCode/

OMG MAF

The OMG (Object Management Group) has a Common Facility Task Force
(CFTF) which has published a RFP3 for Mobile Agent Facility
(http://www.omg.org/docs/1995/95-11-03.txt), which is largely concerned with
providing a framework for mobile agents which implements a very open
platform- and language-independent standard for agent implementations.
RFP3 is in fact concerned with two areas - Data Interchange Facility and
Mobile Agent Facility. This document is concerned with only the latter of
these two, and submissions to the RFP3 have been accepted addressing only
one of the two areas. The Data Interchange Facility and Mobile Agent
Facility RFP (CF RFP3) homepage is available at
http://www.omg.org/library/schedule/CF_RFP3.htm.

There have been three responses (from IBM, General Magic and Crystaliz) to
the MAF RFP, following which, the three originators of these responses have
agreed to put together a joint submission. This is expected to be evaluated by
the CFTF, which has already evaluated the earlier submission from IBM.

The OMG MAF page (username and password required) can be found at -
http://tick.genmagic.com/~cynthia/mafeval/. It contains information about
the joint submission and links to related resources.

It should be noted that neither Aglets, Kafka nor Voyager come close to
fulfilling the requirements specified by the RFP3. Specifically, the RFP
states that agents should be able to be written in different languages, and

Comparison of autonomous mobile agent technologies 21-0ct-97

should provide basic Common Facilities in the context of OMG’s Object
Management Architecture. Furthermore, the RFP states -

“...Common Facilities will need to provide CORBA-compliant interfaces and
be consistent with the OMG Object Model...”

None of the three technologies currently comes close to providing this sort of
support. This is not necessarily a condemnation of the development teams,
however, as they have all made the decision to design a system which will
allow the user community access to agent technology, and there are clearly
market advantages to being early to release. The best systems will be those
which are best suited in the long run to take on board the issues raised by
MAF and similar standards bodies.

However, certain aspects of the MAF evaluation process can be applied to
each, and although it does not represent a suitable framework for fully
evaluating either technology, useful information can be gained by awareness
of its aims and some of the questions raised.

The authors have chosen this RFP as the basis for their comparison of the
technologies as it conforms quite closely to many of the issues raised in the
FollowMe project. This does not mean that they share an exact match and, in
fact, one issue that is absent from the MAF RFP which is important to
FollowMe is that of security.

It is to be expected that the Aglets, KAFKA and Odyssey teams will work
towards a state in which they could fulfil whatever requirements are laid
down by the final accepted response to RFP3. There is no information
available from ObjectSpace as to their intentions in this area. In each case,
the development teams have made the decision to proceed in the absence of a
definitive framework.

The position held by Mitsuru Oshima (of the Aglets development team) is of
interest. In an email exchange the authors asked -

“what plans are there to bring aglets into line with whatever MAF
specification is accepted (the joint one currently being prepared, for
instance)? “

The response (9t April, 1997) was -

“The focus of MAF submission is on the interoperability, that is, the
specification is independent of agent architecture. Although OMG/MAF is
not on the top of the agenda, there is no technical barrier to bring aglets
into the line. I cannot promise you that we finally join the submission, but
it looks promising.

“Once we join the submission and that submission is accepted, we're under
obligation to develop a generally available offering that implements
OMF/MAF specification.”

21-Oct-97

Comparison of autonomous mobile agent technologies 3

On the Odyssey WWW pages, General Magic stress their involvement in
MAF, and although they make no commitment to offering a MAF-compliant
system, they state in their Odyssey FAQ -

“General Magic, in conjunction with a number of other companies, is
writing the specification for the Object Management Group's Mobile Agent
Facility. The Mobile Agent Facility will enable agents to travel between
agent systems. Odyssey is one example of an agent system. IBM Aglets is
another.”

Although not an official statement from Fujitsu, Takashi Nishigaya, one of
the Kafka development team gave his personal opinion to the authors,
writing that -

“The objective of MAF is a language independent mobile agent, however,
currently KAFKA API depends on Java API and Kafka API's are under
construction. He is investigating how he can satisfy the MAF's
requirements. In future versions of Kafka, the agent architecture might be
separated from communication platform and language. If the architecture
satisfies the MAF requirements, he may submit to MAF. Right now he has
no strong motivation to support CORBA. ORBs (RMI, HORB) is regarded
as implementation platforms of Kafka agents.”

ObjectSpace state in their 1.0 Beta User Guide -

. market feedback will drive the creation of seamless bridges from
Voyager to existing technologies such as CORBA, DCOM and RMI.”

Although this does not address the issue of OMG/MAF compliance, there is
clearly an intention to leverage other technologies. A recent reply from David
Glass (Senior Architect, distributed computing group, ObjectSpace, inc.) to a
question about IIOP and Voyager on the Voyager mailing list
(objectlist@objectspace.com) read -

“our goal is to allow voyager to communicate with objects that understand
different protocols as easily as possible. this includes DCOM and IIOP. we
are therefore looking at voyager performing automatic protocol conversions
so that it can talk to CORBA objects using IIOP, COM objects using
DCOM, and voyager objects using smart messengers.

“so rather than running voyager "over IIOP", the idea is that voyager
should be smart enough to use the right on-the-wire protocol depending on
what kind of object it wishes to talk to.”

Interworking with legacy systems and agents is likely to become a more
important issue in the future, and the authors believe that the importance of
ORB support will show in this area as well as in OMG MAF compliance.

Comparison of autonomous mobile agent technologies 21-0ct-97

Other agent systems

There are a number of agent systems currently available, many as research
projects, but some in more stable forms - a useful resource for general agent-
related links on the WWW can be found at
http://www.cl.cam.ac.uk/users/rwabl/ag-pages.html and the Agent Society’s
Agent Product and Research Activities page is also of interest -
http://www.agent.org/pub/activity.html

APM has done previous work in the area of mobile code, and the document
entitled Status of Industry Work on Signed Mobile Code (APM document
1879) and the presentations Signed Mobile Code (APM document 1779) and
Scripts and Mobile Agents (APM document 1593) have direct relevance in this
area. Work in the E2S project has also looked at issues of mobile code, but
not in the context of autonomous agents, the accent being establishing secure
links, and mobile code as a possible means to establishing this end.

Of specific interest is the mobile agent system Telescript from General Magic
(http://www.genmagic.com/Telescript/index.html), a proprietary commercial
system not based in Java, which has provided at the very least a yardstick
against which to measure mobile agent systems, and possibly a model for
certain types of agent interaction. The Odyssey system is gives a subset of
Telescript functionality, with additional functionality possibly to appear in
future version. Take-up of Telescript was not very great, partly, it seems, due
to the commercial nature of the offering and its relatively high cost, and it
has now been discontinued.

Agents in Java

Terms

As the area of agent technology is still a relatively new one, the terminology
has not yet settled down. As a consequence, there is some real divergence in
terminology between different systems - particularly noticeable in the areas
of the three technologies under evaluation. For this reason, it is useful to set
some terms of reference for the purposes of this document.

Host machine: a machine on which an agent resides, and on which the host
and environment run

Host: the software controlling the environment, running on the host machine.
The host has access to the O/S and other resources on the host machine which
may not be available to agents residing in the environment.

Agent: an instance of some code that represents a user (may or may not be
mobile)

Environment: the execution environment for an agent, it provides the
software link between the host and the agent

21-Oct-97

Comparison of autonomous mobile agent technologies 5

FollowMe requirements

The FollowMe project is an ANSA project to allow mobile users access to
information, and requires mobile software agents for its implementation. A
number of issues are important to the project, and the decision as to which
agent technology to use for initial implementation. Some of the most
important of these are:

security: the ability of agents to enjoy different levels of security based
on their status, and for hosts to differentiate between different agents
and to grant them different levels of access to resources. The ability to
be able to implement security strategies is therefore important to the
project.

Example - an agent from an untrusted domain might be refused access by a

host being run by a bank if, for instance, the host contained a service
providing financial data. In the same case, although some agents (those
belonging to bank employees) might be allowed full access to all the
data, other agents (agents belonging to customers) would only be
allowed partial access.

Java support: the language for implementation should be Java. Also
important is that the execution base should be available for
configuration for the needs of the project, to be able to enforce security
strategies, for instance. Although this does not preclude the use of
other languages, if the entire system were in Java, this type of
configuration would clearly be easier.

Rationale - Java was chosen as the base language for the FollowMe project

for three main reasons -

1. it provides a sandbox, allowing resources and access to them to
be controlled within that context

2. it provides a great platform independence - a pure Java
application should be ‘compile once, run anywhere’.

3. there are a growing number of APIs providing access to legacy
systems and information, allowing businesses to leverage their
current systems.

movement of data: agents should be able to move data with them, and
not solely to move themselves

Example - If an agent is charged with moving between different mortgage

companies for information about their products, that agent will need to
‘report back’ to with the information that it has gleaned.

control of agents: agents should be able to move themselves (or cause
themselves to be moved), and hosts should be able to move agents (or
cause them to be moved). Agents must be aware of their environment,
as their behaviour may well be dependent on their location.

Comparison of autonomous mobile agent technologies 21-0ct-97

Example - If an agent is finding information about new books from a
publisher and visits a host maintained by the publisher in the U.K., the
host might move it to a related site (if, for example, the newest
information were kept at the publisher’s U.S. headquarters). In this
case, the agent would need to realise that it had moved and to change
the currency in which it was working accordingly.

e directory services: there should be ways of naming, identifying and
tracking agents so that agents can both find new resources and keep
track of those which already exist.

e communication: agents should be able to communicate with each
other and with their host(s).

Example- an agent which has gone to a host to arrange a meeting for its
owner would need to talk to other people’s agents to arrange the
meeting. It might also need to talk to the host to determine the local
time - otherwise a meeting might have been arranged at the wrong
time!

* public availability: the technology chosen should be publicly
available, allowing users to create their own agents. For this reason,
choice of a short-term or unsupported research project would be
inappropriate.

Rationale - the FollowMe project is an ESPRIT project to help European
businesses to make better use of existing technology. Choosing a
technology which would be unavailable to European businesses and the
wider business community would not help to achieve this aim.

Other issues that may be of importance in the longer term include:

* ORB support: it is expected (in particular with reference to the MAF
RFP3) that support for new ORBs will be important for agent systems
in the long run, and it is not the intention of the FollowMe to exclude
improvements and innovations in the field. For this reason, the extent
to which the technologies are capable of supporting new ORBs will be
important.

Aglets background

Aglets homepage - http://www.trl.ibm.co.jp/aglets/

Aglets are a technology made available by IBM Tokyo in alpha release in late
1996/early 1997. At the time of writing, it is in alpha 5b release, and the
AWB (Aglets WorkBench) available on an platform supporting Java 1.0.2
with RMI, or Java 1.1+. Java 1.0.2 will not support any more.

21-Oct-97

Comparison of autonomous mobile agent technologies 7

There i1s a lively mailing list (aglets@cosimo.com) and WWW site
(http://www.javalounge.com/), and a fair amount of documentation, including
a book which is currently being written and is being considered for
publication by Addison-Wesley.

The AWB is written entirely in Java, and is fairly simple to use. Tahiti, a
GUlI-based environment, acts both as environment and host to aglets - which
are agents - although aglets can be serialised by hand.

KAFKA background

Kafka homepage - http://www.fujitsu.co.jp/hypertext/free/kafka/index.html

Kafka is a technology made available by Fujitsu in a beta release in August
1997. At the time of writing, it is in beta 1.4 release, and available on an
platform supporting Java 1.1+. There is currently very little documentation
in either English or Japanese. There is a mailing list (kafka-
users@flab.fujitsu.co.jp).

Kafka is written entirely in Java, and the model for Agent control,
instantiation and lifetime is very different to that for Aglets. Each
KAFKA.Agent lives in an instance of the JVM (Java Virtual Machine) on the
host machine, and although kafka.Agents can not migrate to other machines,
the usual way to move code is by KAFKA.Actions, which can be moved
between KAFKA.Agents using reflective techniques, and executed at each.

For these reasons, one reasonable model for implementing a system would be
for KAFKA.Agents to act as hosts, providing environments for
KAFKA Actions, which are executed as separate, mobile code. This is the
model adopted for the purposes of comparison with the Aglets system, unless
specifically noted.

Voyager background

Voyager homepage - http://www.objectspace.com/voyager/

Voyager is an agent technology currently available in product release from
ObjectSpace, and running on an platform under Java 1.1+. It is clearly aimed
at commercial implementation, and the level of documentation is generally
excellent, and there is a mailing list (objectlist@objectspace.com) on which the
technical team seem to be active.

Voyager is currently available for free commercial use, and, according to
ObjectSpace “the voyager core will remain 100% free for commercial
deployment in "regular" computer systems like pcs, minis, etc. no loopholes,
no caveats, 100% free.” Use for embedded applications is subject to licensing.

Voyager is written in completely in Java, and is fairly simple to use. There
are two main types of object in Voyager - applications (which act as hosts) and
agents (which can move between them), exchanging messages, etc.. Both

Comparison of autonomous mobile agent technologies 21-0ct-97

applications and agents can instantiate objects or call methods on remote
hosts.

Odyssey background

Odyssey homepage - http://www.genmagic.com/agents.

Odyssey is an agent technology currently available in beta release from
General Magic, running on any platform under Java 1.1+. As Odyssey is the
result of a research effort, and not a commercial product, it may not be
deployed in a commercial product at this time, though General Magic notes
that they are willing to discuss commercial licensing. The level of
documentation is generally poor, and there is some confusion as to which
documentation applies to (the now defunct) Telescript system, and which to
Odyssey.

At the beginning of May 1997, Danny B. Lange, inventor of Aglets, left IBM
to join the Odyssey team.

Odyssey is written completely in Java, and there are two types of classes -
agents and places, which acts as hosts. The source code is available.

21-Oct-97

Comparison of autonomous mobile agent technologies 9

AGENT FEATURES

A. MAF evaluation

In the MAF evaluation of the IBM RFP3 response by Jin. W. Chang

(jin.w.chang@ac.com), several useful points are made. As they do not relate

specifically to the technologies under review here, they are lifted from context

and paraphrased. Those interested in the full evaluation are encouraged to
reference the full evaluation, can be found on the OMG WWW site at -
http://www.omg.org/archives/mafeval/0001.html. (MAF in this context is any

Mobile Agent Facility).

1. MAF needs to support agent identification and agent location. It is not
certain whether URL can be accepted as the standard for all different
MAFs.

2. MAF needs to support basic agent transportation i.e., can agents be sent
and received?

3. Some MAFs may utilise proprietary internal encoding schemes for the
transport of an agent, others may not. As a result, how do we support
various transport systems between different MAFs?

4. Since agents are moving from one node [host in the terminology of this
document], MAF needs to support the disconnected situation.

5. MAF needs to send agents to different nodes. What is the appropriate
abstraction of these nodes? URL may be too biased to an implementation
- other MAF may choose to use the notion of place (which is simply
represented as a string) and resolve its physical address using a Trader
service.

6. As an agent moves, it may need to interact with other external
applications. If an external application is a proactive entity which
initiates the execution with an agent, it has to be able to monitor the
arrival / departure / disposal / etc. of an agent. This may be accomplished
using an Event service.

7. If an agent moves, MAF needs to track its location.

8. MAF needs to support run-time discovery and monitoring of agent
execution engines and agents by name, or their capabilities.

10 Comparison of autonomous mobile agent technologies 21-0ct-97

9. MAF needs to support the cloning of an agent and the merging of the
cloned agents.

10. MAF needs to delete all cloned agents.

The current RFP does not actually address issues 3, 4, 5, 6, 9, or 10. The
interesting final paragraph of the evaluation concludes -

Regarding RFP; Basically, there are number of important issues which have
not been addressed in the initial RFP. For example, there are no explicit
requirements for interoperability between different MAFs. If MAFs can not
interoperate with each other, what is the point of RFP? Furthermore, the
initial RFP does not discuss about any requirements for supporting the
interaction between agents and other external applications. In practice,
mobile agents rarely work as a standalone program. They tends to collaborate
with other applications.

Aglet features

Environment

Aglets are most commonly based in the Tahiti environment, provided with
the AWB (Aglets WorkBench) as an execution environment. This provides
security features, messaging and migration. Tahiti is 100% Java, but the
source is not currently released by IBM (there seem to be no plans to make it
available) - and this causes a number of problems.

Security

The first of these is security: Tahiti applies security policies, which are partly
configurable by the user. However, they do not deal with issues of exactly
which agents can talk to each other, whether agents can be blocked from
entering the host, or whether aglets can be restricted from moving from a
host once they have entered it. All these issues are likely to be important for
systems with any level of security greater than a very basic one. Some of
these security issues are addressed by the use of Proxies, but control of all
method invocation is through messaging, for which no standards currently
exist.

HTTP tunnelling via a proxy server has been implemented for Aglets, to
allow access to information behind a firewall. Although the ability to access
data sources in such a situation is important, this solution might be seen as
rather simplistic, and to create dangerous opportunities for a technology
whose security features are not very well-defined in the first place.

Another issue is the lack of a directory service. Although Aglets are provided
with unique global identifiers, there is no easy method to track the their
location. Suggestions for forwarding with the use of Proxies would not seem
to scale, and although there is some work within the user community in this

21-Oct-97

Comparison of autonomous mobile agent technologies 11

area, there is no official line from IBM, and there does not seem to be a much
likelihood of a directory service being provided in a release in the near future.

ORBs and messaging

There is currently no support for any ORBs in the AWB.

Some discussion on issues such as trading services, directory services and
message-passing formats, KQML and KIF use, etc., has taken place within
the user community, but lack of interest from IBM and the number of
teething problems associated with the alpha software seem to have distracted
discussion away from these topics. Any work being done seems to be on an
individual basis by users unconnected with IBM.

General

The great plus point for Aglets is their ease of use. Tahiti provides a very
simple environment in which it is easy to place Aglets, and although the API
is not immediately accessible, the documentation currently being produced is
simplifying the process of Aglet programming. The user community around
Aglets is enthusiastic and growing, and this is largely a reflection of the ease
of use of the technology and the fact that it arrived on the scene relatively
early.

IBM have been unwilling to give any information about their plans for a
commercial release of Aglets, and are insisting that the current alpha license
- which is for evaluation purposes only, and allows no commercial use of the
technology - be followed. However, the amount of effort currently being spent
on research and the visibility of Aglets, coupled with IBM’s public stance on
the importance of Java as a technology, point firmly towards commercial
availability in the future.

In conclusion, Aglets provide a relatively simple way to implement agents in
Java, and have the advantage of a wide and growing user base. The
disadvantages revolve round the fact that some important issues have not
been dealt with in as much detail as might be appropriate - in particular
security. IBM has clearly made the decision to produce an easy-to-use system
quickly, and seems to have succeeded. This does mean, however, that some
fundamental issues have not been fully resolved, whilst the ability to make
changes to affected parts of the system has been put outside easy control of
developers.

It is the opinion of the authors that Aglets may well gain a good deal of user
acceptance and therefore market share, although there has been some
rumbling within the user community that changes to important systems take
a long time to be resolved by the development team. It may be that IBM
made a bad decision to go live with an early alpha system, expecting a small
band of testers to give them feedback which they could use, when, in fact, a
large number of users have jumped at this technology, overwhelming the
development team. It will be interesting to see whether the book currently

12

Comparison of autonomous mobile agent technologies 21-0ct-97

being written is published, and if so, what impact it makes on the project and
its acceptance.

Methods

Aglets are provided with an API which is already very rich. Some of the
methods available to programmers include (see Aglet documentation for
details and other methods) -

clone(), deactivate(long), dispatch(URL), dispose(), getAgletContext(), (URL),
getCodeBase(), getldentifier(), getMessageManager(), getProperty(String),
getPropertyKeys(), handleMessage(Message), onActivation(), onArrival(),
onClone(), onCloning(), onCreation(Object), onDeactivating(long),
onDispatching(URL), onDisposing(), onReverting(URL), run() ,
setltinerary(Itinerary), setProperty(String, String), setProxy(AgletProxy),
subscribeMessage(String)

KAFKA features

As explained above, in section 1, KAFKA background, the model for agents in
KAFKA is very different to that in Aglets. This examination of the features
of KAFKA assumes an implementation such as that outlined above, with
KAFKA.Agents acting as hosts for KAFKA.Actions, thus allowing a better
comparison with Aglets. Indeed, the methods provided for KAFKA.Actions
have very similar functions to those for Aglets. However, some other features
which do not rest in this implementation are picked out specifically.

It should again be noted that statements and conclusions reached here should
be regarded as provisional until a full software release is available.

Environment and security

Kafka.Agents do not require an execution environment other than an RMI
registry (the one provided with the release is an adapted version which
implements a directory service), and as the implementation being proposed
would involve using the kafka.Agent as a host, the developer clearly has
almost complete control over policies with regard to agents (here
kafka.Actions). In fact, although in the (sparse) documentation currently
available there is discussion of security implementations, not all the three
levels discussed have been implemented to the authors’ knowledge. APM has
done some related work in implementing a security model using RMI which
should be closely relevant to the kafka system.

Much of the security implementation, and, indeed the power of the KAFKA
system, comes from the use made of reflection. Classes and, specifically,
kafka.Actions, can be added to a kafka.Agent, thus extending the capabilities
of a kafka.Agent, and allowing behaviour to be adaptive, depending on
context. KEach kafka.Action added to a kafka.Agent has its method access

21-Oct-97

Comparison of autonomous mobile agent technologies 13

mediated the kafka.Agent, according to a value associated with the agent,
which could be applied as method-by-method policy.

Kafka.Agents are enable to register with a Directory service, but this is not
the case for Kafka.Actions - the agents in this study. The development team
at Fujitsu have confirmed that there is no current method to track
Kafka.Actions, but the fact that the lower level classes are very open to
development means that building a good distributed system incorporating a
directory service enabling tracking of agents.

The design for Kafka is strong, and, as mentioned several times above, allows
much scope to the developer, whilst providing the framework to implement a
basic system without much difficulty.

ORBs and messaging

There is currently support for HORB, and it is expected that other ORBs will
be added - it is certainly possible for developers to produce their own ORBs,
and the HORB classes would serve as a model.

General

The state of play regarding licensing for Kafka is currently unclear. Fujitsu
should be approached for more information. It is hoped that commercial
licensing may be a possibility.

The major drawback to the Kafka system is also one of its strongest features -
much of the responsibility for the system lies with the developer. Although
this can obviously means that the Kafka system is not very accessible, this is
likely to change as more documentation becomes available. On the other
hand, this does give the developer the chance to implement a system ‘from
the bottom up’, implementing security policies, etc. as needed.

From the viewpoint of extensibility, the great plus point of the Kafka system
is that there is great scope to tailor the technology to the specific needs, as
there is access to all the constituent classes. The system seems well designed
to take this sort of development, and the fact that it is based firmly in Java’s
RMI registry, without precluding developer adaptation is a strong point in its
favour. However, before serious development can go on in Kafka, the lack of
documentation must be addressed.

Methods

The number of methods available to programmers in Kafka API is currently
quite small, and those that are of interest are split across the Kafka.Agent
and the Kafka.Action classes. Some of the methods available to programmers
include -

14

Comparison of autonomous mobile agent technologies 21-0ct-97

Kafka.Agent - add(String, Object), add(String, Object, int), call(String,
Object[]), callAsync(String, Object[]), eval(byte[], String, Object[]),
evalAsync(byte[]), get(String), getResult(int), init(), listAll(),
moveTo(RemoteAgent), remove(String), run(), set(String, Object), start(),
waitForKilled()

Kafka.Action - destroy(), getBytes(String), getClassData(),

getInputStream(String), ignoreResult(), init(), moveTo(RemoteAgent),
printInfo(), self(), start(Object[]), startThread(), stop()

Voyager features

Environment

There are two types of Voyager object - Voyager.agents and Voyager
applications, both of which are based in a Voyager host object, the services for
which are started with the creation of a Voyager applications, and both of
which are written entirely in Java. However, the source is not available for
the Voyager object, and new instances may not be constructed, leaving the
host out of the control of the developer, which causes problems.

Security

The Voyager security comes complete with an optional Voyager Security
Manager. The Voyager Security Manager is a pluggable security manager
that restricts the operations of foreign objects. A foreign object is an object
whose class was loaded across the network from another program.

The Voyager Federated Directory Service allows programmers to build and
link together hierarchies for the management of objects in a distributed
system. Voyager agents do, however, have an automatically assigned Globally
Unique Identifier (GUID).

ORBs and messaging

Although the Voyager system is referred to as an ORB throughout the
documentation, there is no support for any other ORBs currently supported -
though note ObjectSpace’s statements in Section 1, OMG MAF.

The messaging system provided with Voyager is quite sophisticated,
including ‘Smart Messengers’, which can track agents around the network,
and messaging forwarding (via the secretary objects). There is also support
for the remote invocation of remote agents and applications, including the
ability to instantiate new objects remotely. Any Java class can be made a
‘virtual class’, allowing it to be instantiated on remote system.

21-Oct-97

Comparison of autonomous mobile agent technologies 15

Lifespans can be controlled, allowing objects to self-destruct after a certain
elapsed time.

General

Though not supplied with any GUI, Voyager is quite a simple system, and is
extremely well documented. Also in its favour is the fact that it is in a
relatively stable release, and may be used to build commercial applications.
ObjectSpace has issued a statement to the mailing list (objectlist.@object.com)
which is interesting, and may be important in certain situations -

“if you wish to embed voyager in a consumer device, network card, etc. etc.
or wish to obtain a source license to do your own customization, then you
will have to be granted a license from objectspace. the terms for this license
would vary based on the situation”

It is this ease of use and its commercial opportunities which might help
Voyager to acceptance in the user community.

Methods

The Voyager API includes quite a large number or classes and methods
available to the programmer. Many of the functions of Voyager are spread
across different classes; some of the methods available to programmers in the
Agent class include -

die(), dieAfter(int), dieAt(Date), dieWhenNoReferences(), getAddress(),
getAlias(), getApplicationAddress(), getForwarding(), getld(), liveForever(),
move(VObject, String), release(), setForwarding(boolean), toString()

Odyssey features

The model for Odyssey is part-way between that for Aglets and that for
KAFKA, and much of the design is clearly modelled on that of the Telescript
system - also from General Magic. Place objects act as hosts for Agent object,
and can track entry and exit of different agents. They also deal with all
access to resources such as databases on the host machine.

Environment and Security

Place objects do not require an execution environment other than an RMI
registry, and the security model is based on the Java security model and
security manager. While there are no explicit restrictions on a method calls

16

Comparison of autonomous mobile agent technologies 21-0ct-97

basis, the fact that the source is available to the developer allows much
control over security policies to be implemented.

There is no directory service either for Places or Agents, but Places possess a
Location object which is not URL-based, and can be used for identification.

The design for Odyssey seems strong, based as it is on the Telescript model.
Jim White (of the Odyssey development team) notes in the Odyssey FAQ -

“Odyssey 1.0 provides only a subset of Telescript's agent-and-place
functionality. Additional functionality may appear in future versions. Some
Telescript functionality cannot be provided in 100% pure Java using
version 1.1 of the Java virtual machine. Also, Telescript was a complete
programming language and included much functionality that was not
inherently related to mobile agents (e.g., string operations and
dictionaries). Odyssey does not need to provide these classes as they are
already provided within the Java Development Kit.”

There seems to be no specific support for messaging, which means that
Odyssey must use those capabilities supported by RMI. This means that
Odyssey supports synchronous, but not asynchronous messaging. Although
not an insuperable obstacle, and a feature which could be provided by the
developer, this is a drawback to an otherwise excellent system.

ORBs and messaging

There is currently no support for any ORBs, though there are implements of
Odyssey transfer by IIOP and DCOM. As noted above in section 1, OMG
MAF, General Magic are very involved in the work going on in the OMG
MAF, and it seems likely that support for other ORBs will be built in if
General Magic decide make Odyssey their offering for a MAF-compliant
system.

General

The source for Odyssey is available in beta form, and though not supported
directly, General Magic welcomes feedback. Odyssey is not yet available for
commercial products, and no decision has yet been made as to whether to
make it available on a commercial basis, but General Magic is asking those
interested in commercial licensing to contact them.

Odyssey sits at an important point in its life-cycle. Although the system
seems quite mature (probably due to its deriving much of its structure from
Telescript), the lack of documentation is clearly a problem. On the other
hand, the availability of the source, the fact that the system is based firmly in
Java’s RMI registry and that there is low level access means that it is highly
extensible.

21-Oct-97

Comparison of autonomous mobile agent technologies 17

Methods

The number of methods provided in the Odyssey API is small, and they are
spread over a number of classes. The methods available to programmers in
the genmagic.odyssey.Place and genmagic.odyssey.Agent classes (intended
only to provide a kernel of functionality) include -

genmagic.odyssey.Place - entering(Class, ProcessName, String),
exiting(Class, ProcessName, String), location(), returnTicket(), run(),
waitForever()

genmagic.odyssey.Agent - go(Ticket), here(), nextAgentPlace(), run(),
setNextAgentPlace(Place)

18

Comparison of autonomous mobile agent technologies 21-0ct-97

. COMPARISON

A. Feature comparison
Agdlets Kafka Voyager Odyssey
Can an agent migrate? Yes Yes Yes Yes
Can a host for ce an agent to migrate? Yes Yes Yes Yes
100% Java? Yes Yes Yes Yes
Security policies? Yes Yes Yes Yes
Security policies configurable? Partly, Yes Yes Yes
through Tahiti
Security policies modifiable? No Yes No Yes
Status? Alpha5b Betal4 1.0.1 Beta 2.0
Documentation? Good - Poor Very Good Poor
growing
Ease of use? Very Low level Very Quite
accessible programming accessible accessible
Extensibility? Medium High Medium High
Other ORB support? None explicit | Yes (HORB) None explicit | None explicit
Transport layer protocol ATTP RMI or HORB RMI /11OP/
DCOM
Can agents communicate with host? Yes Yes Yes Yes
Can agents communicate with each Yes Only via host Yes Only via host
other?
Synchronous and Asynchronous Yes Yes Yes Only
messages? synchronous
Can agentstransport data? Yes Yes Yes Yes
Directory service? No Yes Yes No
Persistent Agent No No Yes No
Event service?, Event Delegation? Yes No Yes Yes
User acceptance? High not applicable ? ?
Sour ce available? Partially Yes No Partialy
Commercial license available? No (no plans) | Not yet Yes Not yet
determined determined
Lifespan tracking? No No Yes No
UID (Unique Identifier) Yes No Yes No
GUI provided? Yes Simple tool No No
A. Other issues

The early release of Aglets into the community stands it in both good and bad

stead against the opposition.

Whilst there is a wide user community, the

21-Oct-97

Comparison of autonomous mobile agent technologies

19

amount of work that the community generates for the development team does
seem to be hindering development of the technology. There is also some
unrest being felt over the time to a commercial product - users have got so
used to using Aglets that they want to use it for real projects and products.
The ease of use of Aglets counts in their favour, but the difficulty associated
in tailoring the system for specific projects is likely to stand against it. All
these issues could bode well or badly for Aglets, and only time will tell how
well they are accepted.

It has in its favour that it is maybe a better designed system, and is certainly
more easily extensible than Aglets. Whether it is robust enough to stand up
to the opposition, and whether the documentation will provide enough
information to allow much serious development in the short term are
questions that we cannot yet answer. Another point in its favour is the fact
that commercial licenses may well be available for development. This, in
conjunction with the availability of the source code, places Kafka in a very
strong position.

The picture painted by ObjectSpace in their marketing literature puts
Voyager at the intersection of Java, Agent Technology and ORBs, and
mentions ORBIX, TELESCRIPT and JGL specifically. However, this picture
does not seem fair, as the technology does not really implement the best of
any of the other technologies it lists, and has no obvious connection with any
of the specific products. The current lack of security and lack of thought to
matters of scalability are two very important drawbacks, and less though
seems to have gone into the design of the system than, for instance, Kafka.
The main points in its favour are its excellent documentation and the
availability of commercial licenses.

Odyssey is quite a mature technology, thanks to General Magic’s experience
with Telescript, and is let down only by its lack of documentation and
commercial licensing. Also strongly in its favour is General Magic’s
involvement in the MAF submission, where the Odyssey team seem more
involved that do IBM’s Aglet team. It is as yet too early to see what the user
community’s take-up of Odyssey will be, but its extensibility should play in
its favour, particularly if the lack of documentation can be remedied. General
Magic also seem very aware of the importance of other ORBs, and continued
development in this direction should be expected, and would clearly count in
the technology’s favour. The lack of explicit messaging capabilities is also a
clear drawback.

20

Comparison of autonomous mobile agent technologies 21-0ct-97

CONCLUSION

Aglets, KAFKA, Voyager or Odyssey for FollowMe?

Security

The FollowMe project has some important requirements, and most of these
are met by both systems. However, the issue where there is divergence in the
suitability for the project lies in extensibility. None of the technologies yet
provides security to the level required for the FollowMe project, and where
the Kafka and Odyssey systems will allow its implementation, it seems that
the Aglets system would make this a great deal more difficult, particularly
given the lack of access to source code. The same goes for the Voyager system
- possibly even to a greater degree.

ORB support

Another important issue is that there is some ORB support for KAFKA,
where there is as yet none for Aglets, Voyager or Odyssey, though some
support seems likely in the last. It is our opinion that any serious agent
system will need to support ORBs in the longer term, and it seems likely that
this will be more easily implemented in Kafka or Odyssey than in Aglets or
Voyager.

Availability, users and licensing

KAFKA suffers from its lack of exposure to the user community, and
questions remain as to its robustness, and therefore its likely adoption, and if
it were not for these issues, it would probably be more easily recommended
over Odyssey if it were not for the latter’s maturity, though it falls down in
the area of messaging. One point which is likely to become important, and
where KAFKA, Voyager and Odyssey stand in better stead than Aglets is
their stance on licensing, as noted above in section A, Other issues, whereby
they are all open (or are expected to be open, in the case of KAFKA) to
commercial licensing possibilities. In this area, it may well be that Voyager’s
earlier release may well stand it in good stead.

21-Oct-97

Comparison of autonomous mobile agent technologies 21

Final choice

The final decision for the FollowMe project must, in the authors’ opinion, be
between Kafka and Odyssey. Both are very extensible and should have their
source fully available to the developer, and neither precludes implementation
of the sort of security required for the project. Both teams seem very aware of
the necessity of ORB support, are keeping abreast of developments in OMG
MAF which, the authors believe, is likely to have a defining influence on
autonomous agent technologies in the near future. General Magic are willing
to discuss commercial licensing of their respective technologies, and it is
hoped that the same will be true for Fujitsu.

Counting against each is the lack of documentation, and need for low level
development, which may lead to less user acceptance. It is the author’s
recommendation that the project team monitor user acceptance of each
technology, and see how each development team addresses the issue of
documentation before making a concrete choice. The authors also believe
that the two systems may well become interoperable in the longer term as
each embraces future MAF specifications.

22

Comparison of autonomous mobile agent technologies 21-0ct-97

REFERENCES

A. APM documents
» Status of Industry Work on Signed Mobile Code (APM document 1879)
* Signed Mobile Code (presentation, APM document 1779)
» Scripts and Mobile Agents (presentation, APM document 1593)
B. Worldwide Web pages
* Agent Discussion Groups - http://www.agent.org/pub/discussions.html
e Agent Events - http://www.agent.org/pub/events.html
e Agent resources page - http:/www.cl.cam.ac.uk/users/rwabl/ag-
pages.html
o Agent Society Agent Product and Research Activities page -
http://www.agent.org/pub/activity.html
» Agent Society homepage - http://www.agent.org/
* Agent Standards Activities - http://www.agent.org/pub/standards.html
o Aglets homepage - http://www.trl.ibm.co.jp/aglets/
o Aglets user community WWW site - http://www.javalounge.com/
e Data Interchange Facility and Mobile Agent Facility RFP (CF RFP3)
homepage - http://www.omg.org/library/schedule/CF_RFP3.htm
¢ Odyssey homepage - http://www.genmagic.com/agents
« OMG MAF evaluation of IBM response to RFP3
http://www.omg.org/archives/mafeval/0001.html
« OMG MAF page (password required protected) -
http://tick.genmagic.com/~cynthia/mafeval
21-Oct-97 Comparison of autonomous mobile agent technologies 23

 RFP3 for Mobile Agent Facility - http://www.omg.org/docs/1995/95-11-
03.txt

* Telescript homepage - http://www.genmagic.com/Telescript/index.html
* Voyager homepage - http://www.objectspace.com/voyager/

+ Kafka homepage
http://www .fujitsu.co.jp/hypertext/free/kafka/index.html

W3C mobile code review -http://www.w3.org/pub/WWW/MobileCode/

+ W3C homepage - http://www.w3.org/

Mailing lists

Voyager mailing lists -

* objectlist@objectspace.com

* voyager-interest@objectspace.com
Aglets mailing list - aglets@cosimo.com

Kafka mailing list - kafka-users@flab.fujitsu.co.jp

24

Comparison of autonomous mobile agent technologies 21-0ct-97

