
ESPRIT Project No. 25 338

Work package A

Architecture

Architecture Release 1.3

ID: Architecture release V. 1.3 Date: 30/2/98

Author(s): Will Harwood Status: released

Reviewer(s): All Distribution:

Change History

Document Code Change Description Author Date

Architecture Re-
port DA1.1

Draft version of document for discussion. Mike Bur-
sell (APM)

23.Oct.97

New format, completely new input Mike Bur-
sell,
Douglas
Donald-
son (APM)

27.Nov.9
7

Architecture Re-
port DA1.21

Complete Rewrite, references cross ref-
erences and annex I missing

Will Har-
wood,
Douglas
Donald-
son (APM)

20.Apr.98

Architecture Re-
port DA1.22

Revision and Extension Will Har-
wood,
Douglas
Donald-
son (APM)

8.May.98

Architecture Re-
port DA1.3 Draft

Complete Rewrite Will Har-
wood

4 Jan 98

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page i

INTRODUCTION... 1

PROJECT OVERVIEW... 2

FollowMe Project Objectives ...2

INTRODUCTION TO PATTERNS .. 9

The Basic Ideas of Patterns ..9

Patterns and Ontologies..10

Patterns and ODP ...10

An Object Ontology ..11

PROJECT PATTERNS... 14

A Project Heuristic..14

The Mobile Object Workbench/Information Space and Service Deployment Abstractions16

The Autonomous Agents Framework and User Access Abstractions...24

The Pilot Applications...28

REFERENCES ... 31

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 1

Introduction

This document sets out the overall architectural framework of FollowMe. This framework consists
of three parts: -

• There is a connect collection of concepts, or ontology, that defines domain of discourse
of FollowMe. The ontology of FollowMe is drawn largely from the Reference Model for
Open Distributed processing and as such we assume familiarity with [1] and only intro-
duce extensions to the ontology as required by FollowMe.

• There are simple heuristics that have guided the development of FollowMe. The primary
heuristic has been decoupling which is discussed in detail in the section Project Patterns.

• Finally there is the notion of Pattern [2,3,4,5]. A pattern is an approach to solving a spe-
cific kind of recurring problem in a specific context. Patterns are not pieces of code but
approaches to solving problems (that may involve specific pieces of code, but again they
may not). Patterns are an attempt to unify the approaches to design across or levels of
detail.

Our purpose in setting out this framework is to enable re-use of the architectural ideas in future
projects. As such this document does not conform to the structure of a standard scientific paper but
rather is a FollowMe specific “Architecture Dictionary” to be used by the software architects of fu-
ture projects.

This document has three main parts: -
• An introduction to the objectives of the project.
• An introduction to the use of patterns.
• The collection of patterns split into the three parts: -

• The Mobile Object Workbench/Information Space and Service Deployment abstractions.
• The Autonomous Agents Framework and User Access abstractions.
• The Pilot Applications.

This document does not describe the designs of the work package components. Details of where to
find design information from the individual work packages can be found at the end of the Project
Overview (next section).

This document attempts to provide a high level view of what, overall, each work package is trying
to achieve and acts as a repository for specific patterns. Theses patterns are chosen because we feel
that they may be the basis of future design work on other projects.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 2

Project Overview

FollowMe provides a component architecture for the development of distributed mobile applica-
tions. A significant part of this architecture is associated with supporting the mobile user. A mobile
user is a user that is not permanently connected to the Internet and does not have a fixed home ma-
chine or location. Mobile users wish tasks to be performed while they are disconnected from the
Internet and wish results to be delivered to whatever device they have available when they (re) con-
nect. Ideally they wish to use commonly available facilities such as faxes and mobile telephones, as
well as workstations and laptops, to interact with Internet services. Moreover should services re-
quire further user actions while the user is unavailable the user would like tasks to proceed autono-
mously by providing “sensible” defaults and taking “sensible” decisions in the absence of the user.

FollowMe Project Objectives

FollowMe opens up access to the global networks to a new class of users. These users are mobile
and only connected to the network for part of their time. Moreover their point of connection may
change rapidly. For example the executive may move from home, to car, to office, to airport, to ho-
tel, in a single day. During such a day’s travel the executive will want to establish contact with his
office, peruse his personalised newspaper, check his stock options and plan his weekend. Moreover
he will expect to be informed of significant events in his office environment, of significant changes
to his stock portfolio, of the results of searches he has set in motion for data relating to his trip etc.
All this information should be delivered by the most appropriate available means. This will depend
on the executive’s current location and the devices that are available at that location and on charac-
teristics of the data itself, such as whether interactive connection is required, the sensitivity of the
data, etc.

FollowMe augments the current paradigm of distributed computing as, for example, captured in the
ODP reference model [1] with two powerful new paradigms for information system. The first para-
digm is object mobility. Object mobility allows programmers to produce systems in which objects
with state can move around a computer network. The second paradigm is agency. Agency means
that programs act autonomously on behalf of users and so may make decisions when the user is not
connected. Indeed one major decision that often needs to be made is how to connect to the user at a
specific time to deliver a specific piece of information.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 3

Figure 1: Agent Framework

To explain how these two paradigms interact we consider a simple applications scenario. A user
wishes to locate some information on the Internet. The user does not wish to perform the search
himself by browsing the web but rather wishes an agent to perform the search for him and contact
him with the information when the search is complete. The user connects to his “personal assistant”
agent to create a search task. The personal assistant contacts an agent trader to find appropriate
search agents to perform the search task (these agents are called task agents). Generally the user will
provide some specific information and the personal assistant will fill in defaults using the users
“personal profile” which is a collection of information about the users preferences, contact ad-
dresses etc. The personal assistant will then act as contact point for the task agents to supply any
additional information when the user logs off. The user logs off and the task agents are deployed to
perform the search. The task agents may search by remotely contacting services provided at various
host sites or they may move to remote sites and perform searches directly on the host, or generally
from a geographically or computationally favoured location. Once the task agents wish to report
back they contact the personal assistant. The assistant queries the personal profile data to discover
how the user wishes to have the data delivered. This may vary according to the nature of the data
(hypertext, simple text, etc.), the volume of the data, the time of day, the preference structure set up
by the user between modes of available delivery etc. The personal assistant then uses the “user ac-
cess” component of the agent framework to deliver the data to an appropriate choice of device in an
appropriate rendering. The user access component allows the delivery of data to the user to be sub-
stantial independent of the device it is delivered on. So, for example, the use may receive a short
telephone message to inform him that interactively browsable data is available the next time he has
access to a browser. The message might also contain a short summary or key piece of information
(e.g. the message may contain the best match to search criteria and indicate that all matches are
available for viewing with a web browser when the user can get to an appropriate terminal. The
agent infrastructure for such a task is illustrated in Figure 1: Agent Framework.

Agent
Place

Agent
Place Agent

Place

Agent
Place

Agent
Place

Agent
Place

Task Agent
Task Agent

Service ServiceService Service

User's Phone / SMS

Fax 089/123456

User's Desktop

User Access

Personal Profile

Agent
Place

Agent
Place

Personal
Assistant

Task Agent

Agent TraderService Interaction

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 4

This high level picture of the search task is supported extensively by the mobile object workbench
and information space infrastructure (MOW/IS). MOW/IS provide a general mobile, distributed
programming model. This model implements the idea of “cluster” from ODP that realise the notion
of a collocated and uniformly managed group of objects. References between clusters are location
independent. All references to agents, traders, etc. are location transparent references. The personal
information space is an instance of the general information space infrastructure, which itself is real-
ised as a cluster with a management policy for persistent storage. Agent mobility is built upon the
object mobility, which again is realised as a cluster with appropriate management.

The infrastructure supporting the agent picture above is schematically portrayed in Figure 2.

Figure 2 : MOW Infrastructure for an Application

In order to illustrate the potential of the technologies concerned, FollowMe is creating two pilot
applications. The goal of these applications is to validate the approach in real-world situations and
provide direct exploitation paths. The pilots are drawn from two different spheres ensuring that
FollowMe technology will be generally applicable. Ouest France, the largest regional newspaper in
France, will be the basis of one pilot, with the infrastructure of the Internet serviceBavaria Online
providing the other.

The project work has been divided into discrete units, the outputs of each being designed to be both
beneficial as component parts of the project and in their own right. When combined, these compo-
nent parts form a framework capable of supporting applications that meet the FollowMe goals.

The FollowMe project may be seen as three inter-related streams of activity. The first stream pro-
vides a framework for building mobile distributed applications. The second stream builds on this

Agent
Trader

Agent
Trader

Name
Trader

Name
Trader

Service

Task
Agent

Personal Assistant

Host

Host

Host

Task
Agent

Service Host

Remote
Service
Access

Local
Service
Access

Information Space
Host

Local
File
System

User's Phone
/ SMS

Fax

User's
Desktop

User
Access Cluster

Cluster

Cluster

Cluster

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 5

work to create an “autonomous agent framework” that allows agency to be expressed by a natural
and high level set of abstractions. Finally the third stream consists of the pilot applications.

The first stream consists of the work packages: -

Mobile Object Workbench

The Mobile Object Workbench (MOW) provides a platform for building distributed (code) mobile
applications. In FollowMe it, together with Information Spaces (see below), provides a foundation
layer for the development of new services and applications.

Information Spaces

A key requirement of the mobile user is the ability to maintain and access their own information. An
information space will enable a user to access data through one consistent logical view irrespective
of their, or the data’s, location by providing transparency mechanisms enabling the location of data
to be hidden. In addition, the system will enable applications to perform the automatic movement of
subsets of the data to achieve quality of service objectives. Information spaces are an enabling tech-
nology that, for example, make it possible for employees to freely travel between company sites
while still having access to their normal range of information.

Service Deployment

Anticipating the level and location of demand for a service is key to its efficient deployment. Serv-
ice Deployment provides the tools for monitoring service usage and feeding that information back to
interested applications. Applications may then use this information to make decisions about how
and where to deploy services and data. In order to facilitate predictive load management an attempt
will be made to project usage patterns from data in the Personal Profiles.

The second stream consists of the work packages: -

Autonomous Agents

The rate at which services and facilities become available on the Internet will increase. It is essential
that users be provided with alternative means to locate, monitor and interact with information pro-
viders and electronic vendors. The Autonomous Agents framework automates many aspects of
finding and using services, enabling users to specify objectives and have these tasks carried out
while they are disconnected from the network. The project will implement a number of instances of
such agents. This will validate the approach and provide a guide for other applications. FollowMe is
developing the infrastructure and security mechanisms to support very large numbers of agents op-
erating in a wide area distributed environment.

Personal Profiles

Autonomous Agents need to be able to make decisions even when they cannot directly interact with
the user. FollowMe provides a profile for each user, holding a combination of facts and derived in-
formation such as their personal preferences. This will be used to direct agents and reduce the need
to refer to the user for supplementary information. The work will yield a modular encapsulation of a
users’ profile. It explores what essential facts need to be provided and which mechanisms are re-
quired to deduce preferences. Although the pilot applications will be used to drive the requirements

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 6

of this work, the approach is, as far as possible, be generic. A modular approach enables the internal
mechanisms to be easily improved or substituted.

Service Interaction

Current services on the Internet are designed for human use. However, in order for applications to
monitor, interrogate and interact with these services, an alternative interface is required. FollowMe
is developing a template for creating services, a directory capability for locating them and an inter-
face library for interaction. This enables service providers to unilaterally enhance their service and
provides a means to discover the services available.

User Access

This work package provides mechanisms to enable services to be presented through a range of user
interface devices. It has implemented tools to support a number of common devices. However, the
approach will be generic, enabling other devices to be incorporated without the requirement to
modify the service or the basic mechanisms of User Access.

The third stream of activity implements prototype applications that illustrate both how the mobile
user may be supported and how code and data mobility, encapsulated in mobile objects and storable
objects (see below) provide a better programming paradigm for the development of these applica-
tions. This stream consists of two pilot application activities: -

Pilot 1
Pilot 1 is intended to validate the agent concept in a part of the Internet called Bavaria On-line. The
Bavaria On-line project is sponsored by the Bavarian government and operates a part of the Internet.
The Bavarian Citizen networks act as regional information and service providers for everyone.
Servers (information brokers/service representatives) will be installed on the network, providing the
following personalised services:
1. Provide information on the status of one's stock portfolio
2. Provide an information and alerting service on regional events (entertainment, politics, educa-

tion, etc.).

The two applications were identified because they require different access through agents. For the
first application, a user can indicate the content of his/her stock portfolio. Through a match maker
(yellow pages) he accesses the single service provider which returns the information requested
through the task executor (the agent). For the second application, a variety of different service pro-
viders will be available and information will need to be collected, summarised and presented to the
user through the interaction of multiple agents.

Pilot 2

The ETEL electronic newspaper service that is developed by INRIA, Ouest-France, TC-multimedia,
and O2 Technology (a well-known company in the database area) aims at providing a service with
the following features:

• Coupled production of paper and electronic editions, i.e. production of the two versions from
the same data.

• Presentation of the information that combines the advantages of both the paper version and the
electronic support.

• Integrated view of newspaper-based information and links to services.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 7

• Addressing Quality of Service (QoS) requirements (responsiveness, scalability and availability).

A first prototype of ETEL is operational since August 1996. Its architecture is based on the client-
server model, the server managing the data base and readers accesses. The reader accesses the serv-
ice through a dedicated interface available for PCs running Windows-95. The communication sys-
tem is based on the ISDN network. The next step of the ETEL prototype, will be the integration of
our solutions to ETEL QoS requirements (responsiveness).

For many reasons (accessibility, deployment, etc.), it is clear that the ETEL prototype will have to
evolve to supportcustomisationof the electronic newspaper content from the standpoint of both the
reader’s profile and the reader’s geographical location. While the former type of customisation is
already treated in the ETEL current prototype, the latter is not addressed due to dynamic issues as
illustrated by the two following scenarios.

As a first scenario, we consider the “theatre” service provided by ETEL. In the current ETEL pro-
totype, such a service lists movies played in pre-selected cities registered in the ETEL database. Let
us now imagine that one ETEL user living in Rennes is going to travel to Cambridge (GB) for two
weeks. When he/she is connecting to ETEL and accesses the theatre service from Cambridge, he/she
wants to know movies played in Cambridge and not those played in Rennes (F). To implement such
a facility, one solution would be to implement the theatre service as an intelligent agent that can
take into account that the reader is currently in Cambridge. Then, when he/she is accessing the
theatre service through ETEL, he/she gets the list of movies played in Cambridge.

The second scenario is concerned with an ETEL user, who is travelling to New York. If he/she
wants to access the ETEL service each morning in order to get news from France, the best solution
today is to use Internet. However due to the network traffic, he/she might have to wait a long time
before reading the content of the newspaper. An alternative solution would be that the newspaper
“follows” the reader in such a way that when he/she connects to ETEL, a copy of the newspaper
already exists on a site located in New York. Thus, long distant accesses become similar to local
ones.

The implementation of dynamic customisation raises several problems, including:

• the location of ETEL users,
• the management of user accesses from a variety of locations using diverse access points,
• the use of the agent technology including the management of agent co-operation,
• the management of data access integrating mobility aspects.

To our knowledge, there is no available technology that solves the above problems. On the other
hand, the FollowMe architecture will provide the necessary support for enriching ETEL with dy-
namic customisation, leading to the ETEL++ newspaper service.

These example applications do not represent work that is integral to the architecture of a FollowMe
system, rather they represent how components from the FollowMe kit of parts can be assembled to
produce working applications. These applications are extremely important to the health of the proj-
ect. They provide vital feedback from the “real-world” and indicate how deliverables need to be
modified or revised to account for the needs of real applications (this has already occurred with the
change in conception that has taken place in work package C which has changed so as to provide a
more flexible facility for persistent information storage).

Detailed documentation on the design of the various components can be found in: -
• Mobile Object Workbench [6]

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 8

• Information Spaces [7]
• Service Deployment [8]
• Autonomous Agents [9]
• Personal Profiles [10]
• Service Interaction [11]
• User Access [12]
• Pilot 1 [13]
• Pilot 2 [14]

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 9

Introduction to Patterns

The Basic Ideas of Patterns

Design patterns are a way of talking about the abstract regularities in a software design. By con-
forming to a set of design patterns it is possible to achieve piecemeal growth whilst maintaining an
overall design consistency between separately developed parts of a system so that they exhibit an
overall regularity in structure and behaviour and fit together in a natural way. Patterns are “problem
solving heuristics” presented in a context specific form. Adopting a common set of patterns within a
system solving similar problems by similar means so that each part of the system “talks the same
language” as other parts of the system. This means that similar problems are address in similar ways
throughout the system, rather than by an ad hoc collection of solutions.

“Each pattern is a three-part rule, which expresses a relation between a certain context, a problem,
and a solution” [2]. Moreover each pattern: -

• “…is the abstraction from a concrete form which keeps recurring in specific non-arbitrary con-
texts” [3],

• expresses anencapsulationof a separable aspect of an overall design task,
• expresses a balance orequilibrium between opposing requirements,
• is open to extension and modification,
• is composablewith other design patterns,

Each design pattern is described by a: -

Name: A short descriptive name or phrase that is usually indicative of the solution rather than of the
problem or context (see below).
Context: A description of context for the use of the pattern.
Problem: A description of the conflicting forces to be resolved and constraints placed upon the
resolution, and how these interact with one another.
Solution: A description of components of a solution, their relationship to one another and the rules
of construction by which the solution may be achieved. Ideally the solution for a pattern list several
variants of the solution and/or ways to adjust the solution to varying circumstances. Solutions refer
to other patterns in the pattern hierarchy.
Cross-reference: To the patterns this pattern reifies or which are used as components of this pat-
tern.
Examples: Illustrations of the use of the pattern by concrete example.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 10

Patterns are a tool for expressing structural regularities which are reused across a design. However
one should be aware that the notion of structure goes beyond the simple static relationship between
physical or software components and extends to structures in time (dynamics), structures in society
(organisational structure) etc. That purpose of patterns is to make designs “more harmonious” by
allowing the same themes to be repeated in indefinite variation throughout. Software Patterns are
not to be identified with particular pieces of code or particular objects, although they may be real-
ised by these in a particular design. Rather patterns have the flavour of interfaces and algorithms.
They define what objects can do or the abstract processes by which they may do something rather
than the concrete particulars.

Patterns and Ontologies
Designs do not exist in isolation, rather they are defined in terms of an ontology, a connected col-
lection concepts that delineates a domain of discourse. In practice an ontology is open ended in that
new concepts are being added along with new discoveries and inventions. Patterns define a set of
problem/solution pairs within a domain of discourse. The ontology provides a set of anchor points
and an extensible framework that supports a continuing and expanding dialogue about a particular
class of designs.

In practice our job is to provide an ontology (or reference model) adequate for the discussion of
partially connected users and mobile objects and a set of patterns for solving specific problems that
arise in this context. Partially connected users arise in the context of user mobility. Users move be-
tween locations. They may either move from one location to another, and may use different ma-
chines at each location, or they may take their personal machine with them and disconnect it from
one point in a network and re-connect it at another. Users may wish tasks to execute while they are
disconnected from the system and results, mail etc. may accumulate for them until they re-connect.
User may not have any fixed association with a “home location” or a “home machine”.

Patterns and ODP
ODP is an ontology for open distributed processing design. It provides a set of basic patterns for
discussing and designing open distributed systems.

The architectural aspects that will be covered in detail in this document are those that relate specifi-
cally to user and code mobility, to the use of autonomous agents and to the specific applications that
have been used to demonstrate the FollowMe concept.

The ODP viewpoint model provides a way of structuring the ontology of Open distribute Systems
into groups of concepts related to different aspects of a system.

The ODP viewpoints are: -

The enterprise view defines the intentional view of a system. Enterprise entities are intentional in
that they have purpose. These entities “have responsibilities”, “become obligated”, “are permitted or
prohibited”, “have goals and commitments” etc. Enterprise relationships express the relationship
between the intentions of different entities.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 11

The information view defines the extensional structure of a system. The information objects repre-
sent pieces of information and the relationships represent invariant between those pieces of infor-
mation.

Thecomputational view defines which objects are responsible for maintaining the invariant.

Theengineering viewdefines how the objects are distributed.

For each viewpoint we may speak of a correspondingmodel or ontology which defines the kind of
things can be said in each viewpoint. Thus, in particular, we need to speak of thecomputational
model that defines a system in terms of objects that interact through interfaces that enable the sys-
tem to be distributed.

The ODP computational model defines a number oftransparenciesor abstractions that allow the
application programmer to separate concerns in the program. These transparencies are realised in
the engineering view.

Access transparency: which masks differences in data representation and invocation mechanisms
to enable interworking between objects.
Failure transparency: which masks from an object the failure and possible recovery of other ob-
jects (or itself) to enable fault tolerance.
Location transparency: which masks the use of information aboutlocation in spacewhen identi-
fying and binding to an interface
Migration transparency : which masks from an object the ability of the system to change the loca-
tion of that object.
Relocation transparency: which masks relocation of an interface from other interfaces bound to it.
Replication transparency: which masks the use of a group of mutually behaviourally compatible
objects to support an interface.
Persistence transparency: which masks from an object the deactivation and reactivation of other
objects (or itself).
Transaction transparency: which masks co-ordination of activities amongst a configuration of
objects to achieve consistency.

In terms of the ODP ontology the extension that is required for mobile objects occurs in the com-
putational view with respect to the notion of location transparency. FollowMe mobile objects need
to violate location transparency and be partially location aware. In FollowMe this location aware-
ness is supported byreflecting aspects of the ODP engineering model into the FollowMe computa-
tional model. Thus allowing application programmers to create objects which are location aware
and that can change their location.

An Object Ontology
Throughout the project there is pervasive use of the “object pattern”. Since much has been written
on the use of objects in software design we take objects to be an “understood” pattern. From our
perspective the key feature of the object pattern is that “data” and the meaning that is assigned to
“data” by operations are treated as a single, indivisible, entity.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 12

In discussing design patterns it is useful to have a standard vocabulary for various attributes of ob-
jects or collections of objects.

Object Behaviour Concepts

Active Object: An object (or object group) is active if it has its own threads. Such an object may
perform actions whether or not it is interacting with a client.
Autonomous Object: An object (or object group) is autonomous if it is self managing. That is, the
object may be requested to perform certain actions by services or execution vehicles but it is up to
the object to decide whether or not to perform the action. Autonomy is always limited in practice in
that an execution vehicle always has recourse to lower level interfaces that allow it to operate on
objects.
Persistent Object: An object (or object group) which exists beyond the lifetime of the program that
uses it and beyond the lifetime of any particular execution vehicle.

Reactive Objects: An object (or object group) is reactive if it has no internal threads, i.e. the object
is dormant until it acquires threads from a client via a method invocation, it performs its method and
becomes dormant again upon the method return.

Object Grouping Concepts

Execution Vehicle: An execution vehicle is an (abstract/virtual) machine capable of executing a
cluster.
Object Grouping: Collections of objects may be grouped together to form a “collective objects”.
Such collectives are defined by a common encapsulation boundary which mediates the interactions
between the collective and other collectives. Access between collectives is achieved by the collec-
tive exporting interfaces for some of its members across the boundary. Object grouping is hierarchi-
cal in that collections of objects and collectives may be grouped to form a larger collective object.
Object Clustering: Behavioural components of a system are represented by collocated collections
of objects called clusters. Collocated means that objects reside on the same execution vehicle.
Clusters are collective objects.

Meta-Objects Concepts

Introspection: Introspection is the act of examining meta-data about an object to obtain details of
the structure of the object. Use of the introspection pattern requires the creation a suitable form of
meta-data and its attachment to the objects being described. In practice such meta-data is an object
with a particular signature.
Meta-Objects: The meta-object pattern allows us to modify the behavior of an object (object
groups) by intercepting the communications to and from an object and transforming the intercepted
messages or choosing to enact some entirely new behavior. Meta-Object allows us to transparently
and dynamically extend, restrict or otherwise change the behavior of an object.

Name Binding Concepts

Location Transparent Reference: Interface references between object clusters are decoupled from
the actual location of the cluster. This means that an object possessing a location transparent refer-
ence to an interface may use that interface irrespective of the actual location of the object supporting
that interface (although subject to other constraints such as security which may restrict the rights of
objects to use the functionality offered by the interface).

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 13

Dynamic Binding: Dynamic binding is the contextually dependent binding of names to val-
ues/references.

Service Concepts

Factory: A factory is a service that manufactures objects (or object groups) of a particular kind
from other objects (object groups) provided as “raw materials”. Normally a factory is reactive.
Server: A server is an object group that offers a particular set of interfaces. The behaviour offered
over an interface is called a service. Servers may have internal state and may be reactive or autono-
mous.
Service Directory: A service directory is a Service Map where the service description is a (syntac-
tic) name for the service.
Service Map: A service map is a service that maps between some form of service description and
service interfaces.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 14

Project Patterns

A Project Heuristic
Throughout the project there is the recurring heuristic theme of decoupling. This heuristic occurs at
a high level in the applications, in which software intermediaries are used to decouple end users of
information from producers of information; the idea recurs with agents that decouples “the user”
from “the application” the user is running and with “user access” which decouples the form and
content of information. At lower levels of abstraction the theme continues with the adoption of the
ODP engineering transparencies that decouple objects from (physical) locations.

The general notion of decoupling can be broken down into two typical cases. In the first case illus-
trated in Figure 3 two objects that interact are contained within the same administrative or physical
boundary. Decoupling is achieved by building an infrastructure to support the interaction that allows
the objects to be placed in separate administrative or physical boundaries.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 15

Figure 3: Decoupling of Components

The notion of boundary is quite general and may constitute the boundary imposed by a process
space, a machine, a network, a physical location, a time etc.
The second form of decoupling occurs when a design in which two logically distinct concepts are
jointly implemented by a single mechanism is replaced by a design in which the two logically dis-
tinct concepts are implemented by different mechanisms. This is illustrated in Figure 4: Decoupling
of Implementation Mechanisms

Figure 4: Decoupling of Implementation Mechanisms

Interaction

Physical or
administrative
boundary

Infrastructure

Concept 1 Concept 2

mechanism

Mechanism 2Mechanism 1

Concept 1 Concept 2

Interaction

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 16

The Mobile Object Workbench/Information Space and
Service Deployment Abstractions
The Mobile Object Workbench and Information Space provide abstractions that support mobile and
persistent objects respectively. They both build upon the notion of clusters. Clusters are collections
of co-located objects that need to be managed as a group. For example, a mobile agent is a collec-
tion of objects that are required to move together between locations and a “persistent object” is a
cluster that is moved between active memory and backing store. A cluster decouples objects within
the cluster from objects outside the cluster in that references between objects within different cluster
are “location and migration transparent”. Clusters are entities in the computational viewpoint that
are supported by infrastructure provided in the engineering viewpoint.

Figure 5: MOW/IS Clusters and Infrastructures

Name: Cluster Abstraction (Computational)
Context: Distributed Object Based Systems
Problem: A number of co-located objects need to bemanagedas a group. For example, the ob-

jects may comprise an untusted piece of code that is to be isolated from its environment,
or other objects in the same location. The objects may be the components of an agent
that should be migrated as a unit, or may be the components of a set that must be ac-
cessed in a controlled manner.

Solution: Clusters are a computational abstraction for ‘groups’ of objects. The ODP definition of
cluster is “A configuration of basic engineering objects forming a single unit for the
purposes of deactivation, checkpointing, reactivation, recovery and migration”. We
widen this definition to include groups of co-located engineering objects that need to be
managed in other ways, for example for security, scheduling or version management.
Cluster instances are created byCapsules. Different (types of) capsule may be capable
of creating clusters which embody different management policies. Upon cluster creation,
a capsule may (or may not) relinquish some of the management of the cluster to the

Shared Infrastructure e.g. Naming service

Place

Place

Store

Local
File
System

Cluster

Cluster

Cluster Cluster

Place Specific Communications Infrastructure

Storage Infrastructure

Cluster Specific Communications Infrastructure Cluster Specific Communications Infrastructure

Cluster Specific Communications Infrastructure Cluster Specific Communications Infrastructure

object

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 17

cluster itself, or to a third party. Anautonomous clusteris one where the cluster’s inter-
action with its environment may only be controlled from within the cluster.

Example: Example cluster abstractions used within FollowMe includeMobile Clusters– autono-
mous clusters that are capable of moving between Places (A place is a type of Capsule
that supports Mobile Clusters), andStorable Cluster– clusters that are transparently
persistent.

Name: Clusters (Engineering)
Context: Distributed Object Based Systems
Problem: Realisation of Computational Cluster Abstraction
Solution: Isolation is achieved by removing the (direct) use of shared resources. Each newly cre-

ated cluster is therefore given its own instance of any normally shared resource, in par-
ticular, it is given its own instance of the middleware platform used to achieve distribu-
tion transparency. As the middleware platform provides its sole means of communica-
tion with other local or remote objects, the cluster is effectively isolated from them. This
is sufficient to provide a cluster abstraction. To add utility to this abstraction, a mecha-
nism is required toreflect the cluster’s interaction with its environment, so that this may
be controlled and co-ordinated. In particular, we wish to reflect communications made
between objects in different clusters, which take place using the middleware platform.
This reflection is directed to aCluster Manager. This is an object with intimate knowl-
edge of the environment that is used to control the clusters interaction. In particular, if
invocations into the cluster may be reflected, then they may be co-ordinated to meet an
isolation management policy – for example to enforce locking.

Example: The Mobile Object Workbench uses the Clusters pattern to implement FlexiNet clusters.
It reflects method invocation from external clusters. This is used in the Mobile Object
Workbench to isolate a cluster whilst it is preparing to move, and in the Information
Space to delay an invocation whilst a cluster is retrieved from disc. In addition,intro-
spectionis used to enumerate exported interfaces from a cluster, to allow the MOW to
map these reference to references in a newly created clone of the cluster; and to enumer-
ate objects within the cluster, to allow the MOW and Information Space to serialise a
cluster in order to copy it (to a new capsule or to disk).

Name: Strong Encapsulation – Threads (Engineering)
Context: Distributed Object Based Systems using Clusters
Problem: A cluster may require a high degree of isolation to allow it to be treated as a distin-

guished entity by the operating system or other systems outside the scope of the mid-
dleware platform providing the cluster abstraction. In particular it may be associated
with a different security policy, or with a different threading priority.

Problem2: Different clusters may be mutually distrustful. In an environment where a thread within
one cluster may invoke a method on an object in a second cluster it is important that the
clusters cannot break the isolation between them. In particular, the caller cluster (or a
third party) should not be able to leave the callee cluster in an inconsistent state by un-
expectedly terminating the calling thread midway through execution of an invocation.
Similarly, the callee must not be able to block a call indefinitely, unless the caller is able
to recover independently.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 18

Solution: These two problems may both be tackled by thread management. The solution relies on
the provision of a Thread Group abstraction in the underlying environment, and the in-
troduction of additional functions into the middleware platform providing the cluster ab-
straction. Each cluster is associated with a different thread group. Threads in this thread
group may only create other threads that are in the same thread group (or in a child
thread group). It is therefore possible to determine which cluster a thread belongs to.
This is used as the basis of strong encapsulation. The middleware system providing the
cluster abstraction contains the only means for a thread to ‘escape’ to a new cluster. This
must be modified so that threads entering a cluster are replaced with threads in the
cluster’s own thread group. Thread rendezvous may be used to make this transparent.
Each thread group is then linked to a particular cluster, and may be associated with dif-
ferent thread priority models. When a security policy needs consulting, the callee thread
may be used to determine the originating cluster – even if the call is not made via the
middleware platform. In Java, for example, this allows a different security manager to
be associated with each cluster. The thread decoupling also solves the second problem,
one cluster cannot adversely affect another by blocking or destroying a thread – each
cluster has entirely separate threads, which may be created, destroyed, and timed out in-
dependently of each other.

Example: The Mobile Object Workbench uses strong encapsulation to provide mobile clusters that
represent Agents.

Name: Strong Encapsulation – Code (Engineering)
Context: Distributed Object Based Systems using Clusters
Problem: A cluster may require a high degree of isolation to allow it to be treated as a distin-

guished entity by the operating system or other systems outside the scope of the mid-
dleware platform providing the cluster abstraction. In particular it may use different ver-
sions of libraries or system classes.

Solution: This solution relies on the ability to load multiple versions of a library or class at the
same time. This is possible in the Java language. Each cluster is associated with a class
loader, or set of class loaders. Initial objects created within the cluster are loaded using
this class loader. Subsequent objects that they then create will also use this classloader
automatically. By configuring the class loader appropriately, it is therefore possible to
arrange that a cluster uses a particular version of a library or system class. Other clusters
in the same process will be using other class loaders and will be unaffected by this.
Note. The middleware system providing the cluster abstraction may itself cause the
creation of new objects within the cluster. It is important that it too makes use of the
cluster’s class loader. Objects passed between clusters on the same machine must be
fully serialised and then de-serialised; a deep copy operation would lead to a ‘pollution’
of the cluster/classloader abstraction.

Example: The Mobile Object Workbench uses strong encapsulation to provide mobile clusters that
represent Agents.

Name: Meaningful Names for Recovery (Engineering)
Context: Persistent object storage
Problem: If a client process causes the creation of a persistent object in a remote location, and

then fails, it is likely that the persistent object will remain, but that the (only) reference
to it will be lost. There will therefore be no way of referencing the object, and, more im-
portantly, ever reclaiming the resources it uses.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 19

Solution: The solution is to arrange that when each persistent object is created, a reference to it is
atomically created in a persistent log, or directory. This reference to the object can later
be retrieved, even if all other references are lost. It is important that the object reference
is identified by a name that ismeaningful, even if the creating process immediately fails.
A management process (or human user) can then recognise the name of the object and
obtain a reference to it. It is essential that the object creator chooses the name – if the
object store were to do this, it would have insufficient information to choose a name that
was recognisable by the management process or human user. If the object store manages
many clients, it must provide a mechanism to avoid the problem of different clients
choosing the same meaningful name for their objects. A (directory, name) tuple may be
used for this, where each client is associated with a different directory.

Example: In the information space, a directory hierarchy is associated with each store, to allow the
meaningful naming of its contents. This directory is also used to store the names of ob-
jects copied from one store to another – as this too may result in unreferenced objects.
The directory serves two additional roles, it provides a convenient directory service for
application use, and it provides a management interface for ‘housekeeping’ of stored
objects.

Name: Bundle (Information/Engineering)
Context: Version management of distributed objects
Problem: In a large distributed system, there may be many versions of particular sub-systems run-

ning at any point in time. In a system that supports the dynamic loading or migration of
objects, then upon loading, the system must determine which version of a class or other
resource to load. In addition, if that resource contains references to further resources,
then the versions of those resources to be used must be selected.

Solution: The solution has two parts. Firstly, we arrange that resources are tagged with versioning
information, and contain versioning information about the other resource they reference.
Secondly, we arrange that when the names or identifiers of resources are passed from
node to node, this versioning information is included. The potential overhead of this
system is high. To reduce this we introduce the second part of the solution – bundling.
Bundles are collections of resources. The resource themselves contain no version infor-
mation, but the collection as a whole is annotated with version information. Likewise,
each resource may contain references to arbitrary resources, and these references are not
annotated. Instead, the bundle contains a list of bundles from which other resources are
imported. This list is version controlled. This is illustrated in Figure 6.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 20

D

B

C

A

E

FV.1
V.1

V.1 V.1

V.2

V.2

V.2

V.2

V.2

V.1
V.1

V.1

V.2
V.2

D

B

C

A

E

F

A graph of resources with explict
versioning information

The same resources, grouped into
bundles. The resource graph itself

contains no versioning information, this
is stored in the bundles.

Name "Alpha"
Version 2 .
Contents:

A version 2
B version 2
C version 1

Imports:
"Dee" v.2

Name "Dee"
Version 2 .
Contents:

D version 2
Imports:

"Egg" v.1

Name "Egg"
Version 1 .
Contents:

E version 1
F version 1

Figure 6

This ‘bundling’ of resources reduces the version control overhead. It also has another
significant advantage; the resources themselves are not ‘polluted’ with versioning in-
formation. This allows bundling to be used as adeployment timeprocess, and there is no
need to affect the development of the distributed system itself.

Bundling allows the representation of any graph that corresponds to a ‘snapshot’ of re-
sources – i.e. a graph where there is only one version of each resource. This is the only
case we require for the use of bundles within FollowMe. An important decision is the
granularity of bundles – how many resources should be placed in each bundle. Large
bundles reduce the amount of additional information that must be stored for version
control – but a new version of the bundle must be created each time one of its constitu-
ents is updated. Small bundles have a higher runtime overhead – but most bundles will
be unaffected by a change to a single resource. Resource bundles are often used to man-
age code versions. For this application, an appropriate bundle size is a ‘library’ or other
unit of code that is updated/released as a unit.

Example: Bundles are used in the Mobile Object Workbench’s Class Repository to support the
deployment of different versions of Java classes. Java classes are naturally collected into
‘Jar’ files, and in the class repository, each Jar corresponds to a bundle.

Name: Smart Proxies
Context: Distributed Object Systems
Problem: In a distributed object system, a reference to a remote object is represented at an engi-

neering level by a reference a local representative orproxyfor the remote object. In
normal ‘dumb’ proxies, the proxy reflects method invocation by converting it into a
form understood by the underlying middleware platform. This then invokes the method
on the remote object by communicating with the middleware on the remote machine.
For specialist use, this proxy function is too simplistic. For example a distributed appli-
cation might require that a proxy represents one of a set of remote objects, and dynami-
cally chooses which object to communicate with on a per-invocation basis (to allow
replication). Another application might require that a proxycacheresults from previous

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 21

invocations. Such functions cannot normally be provided by a middleware platform, as
they are domain specific. Equally, they should not be part of the application-proper as
they are engineering objects relating to distribution strategy.

Solution: The solution is to provide a mechanism for ‘Smart Proxies’. These are application spe-
cific proxies. Typically, a service will decide that clients should use a smart proxy when
communicating with it. It will then inform the middleware system of the proxy class to
use. This is an object class, which implements the service’s interface and which should
be deployed on the client in place of a dumb proxy. Typically, smart proxies will also
contain an ordinary (dumb) reference to the remote service. In FlexiNet, smart proxy
classes must extend a distinguished engineering base class. A service may the pass a cli-
ent a reference to a smart proxy, and the middleware platform will replicate the proxy
onto the client machine. To the client, this is transparent, and they see only a normal re-
mote reference.

Examples: Smart proxies are used within FlexiNet for references to the Trader. If the trader were
accessed using dumb proxies, then it would be passed references to many different
services, of many different interface classes. (The function of the trader is to act as a di-
rectory for services). This would lead to the trader having to load and resolve classes
relating to many different applications. This is troublesome both from a security point of
view (the trader must be willing to load many different classes), and from a performance
point of view. To overcome this problem, a smart proxy is used to convert each inter-
face reference into a packed byte-array format. The trader itself therefore only needs to
store byte-arrays, and the security and performance issues are avoided.

Smart proxies may also be used within the ETel application to manage ‘smart refer-
ences’ to replicated read-only objects. The proxy may then choose which replica to
communicate with, based on the load at that replica, and the estimated bandwidth be-
tween the client and each replica.

Name: Generic Proxies
Domain: Smart proxies in distributed object computing.
Problem: Smart proxies are type specific – it is therefore necessary to provide one proxy class for

each interface that is being proxied. For many applications of smart proxies, the func-
tion of the proxy is actually generic. For example a proxy may provide auditing, or
locking. For these cases the programmer overhead of using smart proxies is too high.

Solution: A form of smart proxies has been designed that manage invocations in a generic way.
These proxies sit below an ordinary dumb-proxy and deal with the invocation after it
has been converted to a generic form. Similarly, ageneric-skeletonmay be devised to
perform an analogous task on the server. This sits below the actual service object, and
deals with the invocation in a generic form immediately before and after it is invoked on
the service object.

Examples: Generic proxies are used within the FlexiNet framework to pass contextual information
from client to server when the client is involved in a transaction. They may also be used
to aid debugging, by passing client identities and vector clocks between client and
server.

Name: Generic Invocation
Domain: Middleware engineering
Problem: Much of the processing of an invocation that is handled by a middleware platform is (or

can be viewed as being) generic, in that it is the same for all invocations, regardless of

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 22

the type of the method being invoked, or the type or number of arguments or results.
The standard approach to this problem is to convert the invocation in to packed byte-
array form as early as possible (usually within the stub), so that is may be managed in a
uniform way. This leads to a middleware system that is hard to debug, and difficult to
specialise or evolve.

Solution: The solution to this problem is to use the stub to represent the invocation in a generic
form by converting into an invocation object that may be manipulated by the rest of the
middleware platform. The goal is to delay the conversion to byte-array form for as long
as possible, to increase the proportion of the middleware that may benefit from the
strong typing and mutability of the invocation object. This part of the middleware is
then easier to debug, specialise and evolve. This is illustrated in Figure 7. In the Java
language, construction of such an invocation object is straightforward due to the strong
typing and introspection facilities provided by Java.

Generic Invocation Layer

CLIENT

Wire CommunicationsWire Communications

auto generated STUB

Client Side
Meta Objects

Reflective
Protocol Layers

Reflective
Protocol Layers

Server Side
Meta Objects

Reflective
Protocol Layers

Reflective
Protocol Layers

Typed Communication

Generic Communication

Untyped Communication

Application Code

Middlware Code

Destination
Object

Figure 7

Example: FlexiNet, the platform upon which the Mobile Object Workbench and the Information
Space are designed, uses this pattern as a key design principle.

Service Deployment

Within FollowMe services deployment provides a framework for the observation of the behaviour
of resources. Resources can refer to physical resources such as a CPU, or a communication channel
between two machines. Resources can also refer to high-level notions defined by applications, for
example, number of readers of a newspaper or the popularity of a web page can be seen as re-
sources. Observing the behaviour of a resource is motivated by the need to detect changes in, or
evolutions of, the resources characteristics as the time goes by.

Observing the behaviour of a resource, and the possible variations, can be generalised to observing
the behaviour of any kind of object. We call such observation object monitoring. The need for
monitoring is common to various types of applications. Monitoring suggests a discrete observation
process that can either be periodic or aperiodic. Periodic observation is typically an active process—
the monitoring process uses its own thread to peek at the behaviour of the monitored object. In con-
trast, aperiodic observation is typically passive, since it is an on-demand process.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 23

In its simplest form, monitoring can return a value that stands for the behaviour of the object at the
time it is observed. A typical example is the periodic monitoring of a CPU, which can be translated
into a load factor percentage. More generally, monitoring returns a complex object representing the
behaviour of the observed object. In addition, it might be necessary to keep track of a series of ob-
servations before reacting. We call this process logging.

In the case of logging, values returned by individual observations have to be stored, the stored val-
ues are called a log. The process exploiting these observations analyses the log and takes decisions
based on the global knowledge thereby acquired. Logging is a well-known technique that is widely
used, in particular in the Database world.

It is possible to combine monitoring and logging: Monitoring objects can log the state of observed
objects; and a separate monitoring process can use that log to watch behaviours. It should be appar-
ent that the process of monitoring is orthogonal to the process of logging.

Name: Monitoring
Context: Distributed OO systems
Problem: Within a distributed object oriented system there are many different notions of resource.

Generally changes in availability are not predicable by the system because either
changes external to the system effect the resource or because changes within the system
effect a resource in unpredictable ways. In order to allow a system to respond to re-
source changes, the system needs to monitor resources. Generally a resource is either a
physical quantity such as CPU availability or an abstract quality such as the behaviour
of an object.

Solution: An Active Object that periodically delivers values gathered from the observation of an-
other, monitored, object. A monitor might watch over several different objects. In addi-
tion to its periodic behaviour, a monitor should support on-demand observations. A
monitor is physically supported by a process running on a machine. Its interface, how-
ever, should be location independent.

Example: Performance monitor. The service deployment specialises the general notion of a moni-
tor into a performance Monitor. Resources are monitored, as they are defined in the in-
troduction of this text.

Name: Logging
Context: Data that evolves over time.
Problem: Often the data of interest is not the point value of a resource but rather the way its point

values change over time. To monitor such aspect of behaviour a means of recording the
point values, or some derivative data, is required.

Solution: Provide a dedicated, reactive, storage object with appropriate interfaces for storing and
retrieving (e.g. getFirstLogRecord, or scanForward, scanBackward) the point data. The
storage and retrieval interfaces may be distinct and may be location independent.

Example: A before-image log for a database, the histories defined for the service deployment, a
check-pointing process.

Monitoring and logging may be combined to monitor derivative data. However, one should note,
there are many different ways of combining these patterns e.g. a monitor may log data, an object
may log data and the log is monitored etc.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 24

The Autonomous Agents Framework and User Access
Abstractions
The general function of the agent framework is to decouple the user, and the particular devices the
user has access too, from the application that the user wishes to invoke. This decoupling allows the
user to both change his location, and the devices which are available to him, whilst the application
is running. The software intermediaries which perform the decoupling cope with the problems of:
supplying default answers to input requests from the application while the user is not available;
buffering results and delivering them when the user is available; and converting the material be-
tween presentation formats to deal with the variety of devices that are available to user at different
times.

The general structure of the agent framework was illustrated in Figure 1. This illustration leaves out
two important aspects of the agent framework. The first is the use of scripting as a technique for
programming agent behaviour. The second is the service interaction framework that allows agents to
discover properties of services and for services to provide their own agents to interface to a user.
Although we regard both of theses as design patterns the exact articulation of them appears difficult.
Both of these patterns are attempts to take the theme of decoupling further. At this stage however
our understanding of these patterns is incomplete and we have not attempted to articulate them as
pattern definitions.

Scripting makes writing mobile agents simpler than using the MOW directly. Generally agent
scripting provides some of functionality of the MOW in a form that is more conveniently packaged
for the average agent producer. The Service Interaction framework provides the means by which a
service can: -
1. Advertise it’s availability to agents and users;
2. Supply agents for its use to users.

The model is: When a service starts up it registers itself with a service trader. The service describes
its interfaces syntax and behaviour to the trader and may register agents that can use these inter-
faces. It also registers textual descriptions of these interfaces and agents that are in human readable
form. An agent that wishes to discover details of the service can examine the entries for the service
and either use the service directly or obtain an agent that can interface to a user to give the user ac-
cess to the service. Typically a user will request his personal assistant to locate an agent to perform a
particular task. The personal assistant will locate a service that can perform that task by having a
conversation with a service trader. The service trader will provide a task agent that can talk to the
user (via the personal assistant) to obtain required parameters etc. This is illustrated is Figure 8.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 25

Figure 8: Service Interaction

The patterns for the Autonomous Agent Framework is described built from four simpler patterns.
The first three of these patterns arise from applying the decoupling heuristic and the fourth pattern
arises from the notion that we can sometimes simplify an explanation of a behaviour by changing
the form of the explanation from an extensional form to an intentional form.

Name: Spatio-Temporal Decoupling
Context: User driven computational tasks
Problem: Users are coupled in time and space to the computing tasks they perform.
Solution: The production of computational intermediaries that act on the behalf of a user to de-

couple the user in time and space from the computational task. The intermediaries can
answer questions on behalf of the user by user of user specific defaults, intermediaries
can store and/or redirect output sent to a user and, with the use of the User Access
mechanisms, can tailor output to the devices that the user has available at any given
time.

Example: Personal Assistant; Task Agents.

Name: Representation Decoupling
Context: User driven computational tasks with mobile users.
Problem: The interaction between a user and a computational task is often strongly tied to the type

of interaction/data delivery device the users is expected to have. In an environment
where a user uses devices found at locations as the user moves about (rather than e.g.
having a personal mobile device) the users may loose the ability to interact with the
computational task because the specific device type is not available.

Solution: A partial solution is to define interaction/data delivery more abstractly so that a compu-
tation interacts/delivers data in terms of the abstract model and device rendering deci-
sions are taken as late as possible when the particular device type binding is known.

Personal Assistant

User's Phone
/ SMS

Fax

User's
Desktop

Service
Trader

Service
Trader

Interface
Description

Information Space

service

Task Agent

Registers

Locates

Requests

Deploys

Uses

Task Agent

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 26

Example: The patterns “Document Delivery” and “XML Based Document delivery”.

Name: Complexity Decoupling
Context: User driven computational tasks
Problem: Users fail to take advantage of the range of service available because of the complexity

of the service interfaces.
Solution: The production of computational intermediaries that act on the behalf of a user to de-

couple the user from the complexity of the service. Such intermediaries translate be-
tween the user’s perspective of goals and the service’s perspective of means.

Examples: The Personal Assistant acts as an intermediary between the user and tasks agents and
assist the user in finding and launching appropriate agents to achieve the users goals.
Task Agents encapsulate task specific knowledge that sits between the user and the
service that the user accesses. Service Deployment provides a framework within which a
service may provide a user interaction agent to enable the user to interact with the serv-
ice.

Name: Explanatory Agency
Context: Software Systems with Complicated behaviour
Problem: The extensional description of software becomes so complicated as to become useless in

making predictions about how a piece of software will behave.
Solution: Form a description in of software in different terms, in particular in terms of its inten-

tional attributes. That is rather than attempt to explain the behaviour of the software in
terms of mechanisms the behaviour is explained in terms of such notions as goals, be-
liefs and desires. Such explanations allow users to form internal models of the software
as “social entities” with their own agenda and thus enable users to make predictions
about future states and behaviours of the software [15]. Particular models of this are the
Beliefs, Desires, Intentions model (BDI [16]), the intentional models of Speech Act
Theory [17] (e.g. as within JAFMAS [18]) and the interaction models of Contract Net
Protocols [19]. The shift in stance means that we adopt a social description of software
as interaction among self-interested agents whose rationality is bounded by computa-
tional complexity.

Name: Autonomous Agents Framework
Context: User driven computational tasks with complicated behaviour.
Problem: Users fail to exploit services because:

• The services are complicated to understand and use effectively.
• The use of the services requires the online presence of the user that in many cases is

not practical.
Solution: Combine the patterns Complexity Decoupling, Explanatory Agency, device Decoupling

and Spatio-Temporal Decoupling to produce an intermediary between the services and
the user:
• that manages the complexity on behalf of the user;
• is explicable in terms of the intentional behaviour of the intermediary permits the a

range of devices found at locations;
• and Spatio-Temporally decouples the user from the service.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 27

User Access

Name: Document Delivery
Context: Multi-media presentation of complex information
Problem: Information needs to be delivered to users making use of a variety of devices. The de-

tails of which kind of devices are available to a user change with the time and the user’s
location, and indeed the user’s preferences for how information is delivered may change
for arbitrary reasons. The information must be rendered on these devices in an adequate
quality.

Solution: A uniform model is adopted in which information can be encapsulated in an inter-linked
set of documents. Each document represents a certain piece of the information. A
document supports methods to render this piece of information in several external repre-
sentations (graphic, text, audio, ...), depending on the capabilities of the device. The ex-
ternal representation may refer to other documents that maintain other linked pieces of
information. Devices are encapsulated by device gateways. Device Gateways encapsu-
late the knowledge of the capabilities of the devices and provide Connections to the de-
vices through which documents are rendered to the users. According to the available ca-
pabilities the most appropriate external representation of a document is selected. Inter-
linked information is rendered by querying the referred documents. This model allows
for an information centred design. The representation of this information can be pro-
vided either at compile time, or at delivery time. The encapsulations of a variety of de-
vice types into device gateways allow a uniform interface for rendering of data.

Cross ref: A document is an object that understands how to render itself in different contexts. Par-
ticular instances of the pattern are XML based Document Delivery.

Components:
The component architecture assumes that a client object wishes to deliver something to
a user. The client contacts the User Access component for the user and requests a Con-
nection satisfying some criteria (e.g. suitable for delivering at a particular time of day
and a particular volume of information), the User Access creates a Connection to be
used by the client to communicate with the user and is returned a reference to the Con-
nection together with a description of the Connection which may impose limitations on
messages (e.g. message size). The client constructs a set of documents suitable for the
Connection (it is assumed that it is the client that knows how best to construct, edit, pré-
cis etc. the information to be delivered). The Connection is an abstraction which hides
the details of the use of real devices including any possible multiplexing, queuing etc.

Place

Agent

Connection

end user
device

User Access service

Device Gateway

manages

local device

1: OpenConnection

Document

Navigation

2: Send(Document)

External
Representation

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 28

Figure 9: Document Delivery

Variations:
• Documents may be stubs. By asking them to provide the appropriate external repre-

sentation the virtual device causes the deliverable to collect the actual data from a
remote file store.

• Documents may be created dynamically, depending on the feedback from the user.
When this method is called by a virtual device the deliverable may act as an applet
and an interactive session is started with the user using the local device for computa-
tion.

Name: XML-Based Document Delivery
Context: Multi-medial presentation of structured information
Problem: Different devices may support different layout mechanisms to represent textual infor-

mation, e.g. either as HTML for a web browser, as plain text in an email, as short mes-
sage in SMS, RTF in MS Word. The same information must either be stored and ex-
changed in different layouts or it is stored and exchanged in one unique format and from
this format the different layouts are derived.

Solution: The structured information is stored in a document, which supports the representation as
XML-text. The XML-text holds a reference to an XSL document. This XSL document
contains a set of layout definitions (so-called modes). Each layout definition contains a
set of rules, which describe how the structured information is represented in the appro-
priate format.

Components:
The client sends a document to the connection. The connection requests an XML repre-
sentation of the document and retrieves also the XSL layout definition as a referred
document. The XML and XSL documents are given to a converter that produces the fi-
nal layout in the appropriate mode.

Place Agent

Infor-
mation

Layout

+

+

+

User's Phone / SMS

Fax 089/1234

User's Desktop

Figure 10: XML-based Document Delivery.

The Pilot Applications
The pilot applications are all concerned with delivering information to users through the use of in-
termediaries. The nature of the intermediary varies with the application but the general structure is
capture by the pattern “Information Latticework”. Applications are deployed in a dynamic envi-
ronment and component objects may find themselves subject to resource constraints beyond their
control. This leads to a need for application components to monitor and respond to their environ-
ment dynamically. This aspect of applications is captured by the patterns “Reactive Policy” and
“Resource Aware Adaptation”.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 29

Name: Information Latticework
Context: Distributed Object Oriented Information Systems
Problem: Raw data is produced by a variety of information sources. Often this data is capable of

answering high level queries from end users when equipped with an appropriate inter-
pretation. Generally, however, the end user does not know how to navigate to this data
or how to interpret his query with respect to the available data.

Solution: Provide a set of intermediary processes that understand how to interpret high level que-
ries in terms of lower level data and how to access the raw data sources. Generally we
can think of information consumers linked to raw data providers by a latticework of in-
termediaries that “understand” the structure of information below them (towards the
providers) and how to represent this to nodes above them (towards the consumers). In-
termediaries structure the raw data into “information” by constructing indexes or other
meta-data that make the raw data accessible and meaningful in a specified context
(context is also meta-data) and by transforming the data representation into appropriate
forms to be used the “application” at the next layer in the latticework.

The links between nodes in the latticework may either be “push” or “pull” and in prac-
tice it is likely that different layers will adopt different strategies depending on the de-
tails of the application. Generally the links between the sources, intermediaries and con-
sumers are established dynamically. However, if we consider a snapshot of the network
so formed it is easily visualised as a latticework.

Data
Producers

Information
Consumers

Figure 11: Information Latticework

The network has several degenerate cases that deserve names of their own.The infor-
mation funnelis a latticework with a single consumer and many producers and interme-
diaries. Theinformation fountainis the converse with one producer and many consum-
ers and intermediaries. Theinformation chainhas one consumer and one producer and
many intermediaries. Although one often pictures a latticework as regular this is by no

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 30

means always the case. Latticework intermediaries may cross connect in arbitrary fash-
ion and there may be an arbitrary number of layers of intermediary connecting any data
provider to a consumer.

Name: Reactive Policy
Context: Mobile Object Systems; Object Systems operating in dynamically evolving environ-

ments.
Problem: Objects perform their tasks in a context that is only partially known at the time of the

object’s creation. This means that it is not possible to fully tune an object’s performance
before it is deployed.

Solution: Objects need to actively monitor their environment, and their own performance in that
environment, and tune their behaviour accordingly.

Example: Resource Aware Adaptation (below)

Name: Resource Aware Adaptation
Context: evolving environments
Problem: adapting the behaviour of the application according to an evolution diagnosis stemming

from logging and monitoring.
Solution: Using together monitoring and logging and implementing a reactive policy.
Related: protocol objects, deployable objects as means. monitoring and logging as sources.
Uses: load balancing policy.

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 31

References

[1] ITU-T Recommendation X.901 | ISO/IEC 10746-1: Overview

- ITU-T Recommendation X.902 | ISO/IEC 10746-2: Foundations

- ITU-T Recommendation X.903 | ISO/IEC 10746-3: Architecture

- ITU-T Recommendation X.904 | ISO/IEC 10746-4: Architectural semantics

[2] A Timeless Way of Building Christopher Alexander Oxford University Press

[3] Understanding and Using Patterns in Software Development. Dirk Riehle and Heinz Zulligho-
ven, Theory and Practice of Object Systems 2, 1, 1996, pp. 3-13

[4] CORBA Design Patterns. Thomas J. Mowbray, Raphael C. Malveau. Wiley 1997. ISBN 0-471-
15882-8

[5] Design Patterns Elements of Reusable Object Oriented Software. E. Gamma, R. Helm, R. John-
son, J. Vlissides. Addison Wesley 1995. ISBN 0-201-63361-2

[6] DB8.2: Mobile Object Workbench Deliverables incorporating DB2, DB3, DB4, DB7.2, Richard
Hayton 16.04.98

[7] DC6.1 InformationSpace: Requirements, Design, Interfaces and Report incorporating DC 1, 2,
3, Douglas Donaldson 05.03.98

[8] DG3: Service Deployment, Design, L. Amsaleg, M. Billot, M. Le Nouy, 23.03.1998

[9] DD3: Autonomous Agents, Design, Nick Taylor 24/02/98

[10] DE3: Personal Profiles, Design and Interface Specification, Steve Battle, 06/02/98

[11] DF3: Service Interaction, Design, Steve Battle, 21/04/98

[12] DH3: User Access, Design and Interfaces incorporating DH4, Elcha Triep, Michael Breu[13]
DI2: Pilot Application 1, Requirements, Hans-Guenter Stein, FAST e.V., Lioba Gebauer, FAST
e.V., 16.03.1998

[14] DJ2: Pilot application 2, Requirements, L. Amsaleg, M. Billot, M. Le Nouy, 30.03.98

[15] The Intentional Stance, Daniel Dennet, MIT Press 1987

ID: Architecture Release 1.3 ESPRIT Project No. 25 338 - FollowMe

04.01.98 Work package A Page 32

[16] BDI Agents from Theory to Practice, Anand S. Roa and Michael P. Georgeff, Australian Arti-
ficial Intelligence Institute, Technical Note 56, April 1995

[17] Speech Acts: An Essay on the Philosophy of Language, Cambridge University Press 196918]
JAFMAS: A Java-based Agent Framework for Multiagent Systems Development and Implementa-
tion, Deepika Chauhan, ECECS Department, University of Cincinnati, 1997

[19] Issues in Automated Negotiation and Electronic Commerce: Extending the Contract Net
Framework. Sandholm, T. and Lesser, V. 1995, First International Conference on Multiagent Sys-
tems (ICMAS-95), San Fransisco, pp. 328-335.

