
Timothy L Harris

Churchill College

tlh20@cam.ac.uk

July 30, 1998

First year report

3

Contents

1 Introduction 5
1.1 Overview . 5

2 JDK port 6
2.1 Nemesis . 6
2.2 Features . 7

2.2.1 Core JVM implementation 7
2.2.2 Native methods. 7
2.2.3 File-system access . .. 8
2.2.4 Networking . 8
2.2.5 User interface . 8

3 User-level thread scheduler 8
3.1 Scheduling policy . 9
3.2 Scheduler implementation . 9
3.3 Scheduling example . 12
3.4 Related work . 13

4 Run-time compilation 13
4.1 Design of the compiler . 14

4.1.1 Overview . 14
4.1.2 Register allocation . 15
4.1.3 Optimization . 15
4.1.4 Results . 16

4.2 Control of compilation . 16
4.2.1 Dispatchers . 16
4.2.2 Dispatcher lookup . .. 18
4.2.3 Background compilation. 18

4.3 Related work . 20

5 Garbage collection 24
5.1 Baker’s treadmill collector . 24

5.1.1 Mark bits . 25
5.1.2 Write barrier . 26

5.2 Finalizers . 28
5.2.1 Detecting finalizable objects 28
5.2.2 Accounting finalizers’ CPU usage 28

5.3 Sweeping unreachable objects. 29
5.4 Results . 29
5.5 Related work . 29

6 Conclusion 31

4

5

1 Introduction

The implementation of the Java Virtual Machine (JVM, [LY97]) has been the focus of
widespread effort over the last two years. It is now a standard component of popu-
lar web browsers such as Netscape Navigator, Microsoft Internet Explorer and Hot-
Java. It has been implemented for commodity operating systems such as Microsoft
Windows and Sun Solaris [sun97]. It has even been implemented in hardware in the
picoJava processor [sun98]. However, users and potential users still claim that ‘Java is
slow’ [HG98].

The work described here does not directly address the techniques for optimizing the
performance of theJVM. Instead it concerns two related issues:

� How can the resources of theJVM be shared in a controllable way between dif-
ferent applets and different applications that are being executed concurrently?

� How can existing approaches to optimization be more effectively integrated into
the JVM?

This work was undertaken by the author between October 1997 and July 1998 in the
context of the Pegasus II project. It is hoped that this work will form deliverable 4.1.4
and much of 4.1.5 and 4.3.

1.1 Overview

Aside from attempts to optimize generated bytecode [BK97], most existing work on
improving the performance of Java applications relates to the design and implementa-
tion of just in time (JIT) compilers which translate platform-independent Java bytecode
into native code at run-time [CFM+97, Age97, Har97].

The fundamental problem with this approach is that programs stall while compila-
tion is in progress. This requires that the compiler-induced delays are reduced to an
acceptable level – traditionally by sacrificing optimization, by only compiling some
methods [Age97] or by ahead-of-time annotation with optimization hints [HAKN97].

The approach taken here is to provide a separate mechanism through which the pro-
grammer, system administrator or user can controlwhether, whenandwherecompila-
tion occurs. By providing control overwhethermethods are compiled it is possible
to avoid unnecessarily compiling large and rarely executed methods (such as class
initializers). By controllingwhenmethods are compiled it is possible to schedule
pauses to occur at convenient times (such as when the user is idle, or before a large
computationally-intensive calculation). By controllingwheremethods are compiled
it is possible to choose which threads perform compilation (to separate, for example,
compilation work from maintaining a responsive user interface).

The techniques described in section 4 can support a wide spectrum of policies – includ-
ing, for example, traditionalJIT compilation, compilation guided by run-time feedback
and compilation in a separate background thread.

The issue of resource control is addressed in section 3, which describes the imple-
mentation of a new user-level thread scheduler which is able to provide fine-grained

6

H/W

S/W Sched.

App. App. Device
Driver

System
Domain

Priv

Unpriv

O.S. O.S. O.S. O.S.

Driver StubsSyscalls

Figure 1: The structure of the Nemesis operating system.

control over the allocation ofCPU resources to Java threads. Section 5 describes the
implementation of a concurrent garbage collector.

2 JDK port

2.1 Nemesis

The JDK port described here operates over Nemesis [LMB+96], an operating system
being developed from scratch at the University of Cambridge, the University of Glas-
gow, the University of Twente, the Swedish Institute of Computer Science andAPM

Ltd. Nemesis is designed to provide fine-grained resource control with specific atten-
tion to the needs of soft-realtime multimedia and networked applications. Although the
work described here operates only on Intel x86-based machines, Nemesis also supports
Alpha andARM platforms.

7

The structure of Nemesis is summarized in figure 1. Note that there are no ‘kernel
threads’, the use of privileged code is minimized, and applications, system domains
and device drivers operate almost-entirely within user space. The motivation for this
vertically structureddesign is that it allows accountability between applications and
the resources that they use. This is because applications are doing more of their work
for themselves rather than relying on the kernel or on shared servers to operate on their
behalf.

For example, suppose that a program is receiving data from the network, processing it,
and then displaying it on the screen. Wherever possible the network protocol process-
ing and the display operations will be implemented within shared libraries which are
accessed by threads running within the application. In contrast, if a similar program
was executing over Unix, much of the network protocol processing would occur within
the kernel (and would not be accounted to any application) and much of the display
work would be undertaken by theX server (again, unaccounted to the application in
question).

A consequence of this approach is thatcross-talkbetween applications can be reduced
so that meaningful resource allocations can be made. This is achieved without sac-
rificing security – each application can reside in a separateprotection domainwhich
defines the extent of its access to memory. Packet-filtering techniques control the kinds
of network traffic that an application can generate and receive.

2.2 Features

The NemesisJVM implementation is based on version 1.1.4 of the SunJDK. This code
is licensed under the terms of theJava internal use source licensewhich places restric-
tions on the extent to which the source code to theJVM and any derived binaries can
be distributed. However, a clear separation has been maintained between this restricted
material and the work described in sections 3-5 so that the latter is not encumbered by
theJDK source license.

This section describes different aspects of the port and the extent to which they cur-
rently operate.

2.2.1 Core JVM implementation

The core parts of theJVM have no known problems. For example,.class files can
be read directly from a local filesystem, or viaNFS, can be stored individually or in a
.jar or .zip archive. The main interpreter loop is un-modified from the existing
Intel platforms supported by theJDK.

Performance, measured using the standard Caffeinemark tests, is comparable to thehttp://www.
webfayre.com/
pendragon/cm201/
tests.htm

Linux JDK port running on a similar machine.

2.2.2 Native methods

Native methods can beaccessed through the standardJNI interface. In otherJDK ports
native methods are loaded from WindowsDLLs or from Unix shared libraries – in
Nemesis they are loaded from Nemesis modules.

8

2.2.3 File-system access

Simple open/read/write/close access to files is supported. However the underlying
Nemesis local file-system implementation is read-only. Access to file modification
times, file renaming and directory operations is not supported. This is a consequence
of the fluidity of the Nemesis interfaces.

2.2.4 Networking

Network support is rudimentary.

Straightforward send/receive operations onUDP sockets are supported. This allows
APM’s FlexiNet [HF97] work to be demonstrated over Nemesis and allows, for exam-
ple, communication between applications running in the NemesisJVM and applications
running in Windows or UnixJVMs.

TCPsockets cannot be correctly implemented as a consequence of the lack of a complete
NemesisTCP implementation.

DNS queries have not been implemented.

2.2.5 User interface

The standard user interface support in Java is provided by theAbstract Window Toolkit
(AWT). This has been implemented elsewhere on several platforms – for example Win-
dows, Motif and the Macintosh. It does, however, rely on the availability of a heavy-
weight underlying window system. This is expected to provide facilities such as pop-
up menus, buttons, scroll-bars etc. Providing a completeAWT implementation over the
lightweight Nemesis ‘client renders’ system would therefore involve a large amount of
work and would be impracticable.

However, a restricted subset ofAWT operations have been implemented. These are
sufficient for the newSwing[And98] user interface classes to be supported. Swing
provides standard window system components by rendering them in Java. The simple
operations that it requires map reasonably cleanly onto the existing ‘client renders’
system.

3 User-level thread scheduler

The Java Language Specification (JLS, [GJS97]) requires that ‘when there is compe-
tition for processing resources then threads with high priority are generally executed
in preference to threads with low priority’. This rather loose condition leaves many
aspects of the thread scheduling policy dependent on the implementor. The motivation
here is that it allows Java threads to be implemented in a reasonably natural way over
a variety of hardware and operating systems.

9

As discussed in [Bla94] and [Ros95], this kind of priority-based scheme is inherently
unsuitable for many applications. For example, suppose that a singleJVM contains
two threads, each running on behalf of a separate Java applet. Based on the language
specification it is not possible for theJVM’s user to ensure that both threads even run
at all – perhaps theJVM’s implementor has used a non-preemptive threads package and
one of the applets never blocks or yields. Even if a preemptive system is available then
it remains impossible to control the allocation ofCPU time on a fine granularity – all
that can be adjusted is the threads’ relative priorities.

This section describes the thread scheduling policy used in the NemesisJDK port along
with some details of its implementation.

3.1 Scheduling policy

The thread scheduling policy is broadly similar to that described in [Ros95] and imple-
mented in the Nemesisatroposscheduler.

Threads’CPUrequirements are expressed as a(p; s; x; t) tuple, encoding aperiod, slice,
extra time flagandpriority respectively. For example a requirement of(10ms; 1ms;
False; 0) means that that thread should be allocated 1ms ofCPU time every 10ms of
real-time and that it does not want to receive any ‘extra’ time that remains when all the
allocations have been met.

The priority field is used to control how extra time is divided between any threads
whose flag is set. This is done on a strict-priority basis with time distributed evenly
amongst the threads that have the highest priority. This integration of priorities allows
the scheduler to meet its requirements under the Java Language Specification.

The standard Nemesis interface to the threads package allows any thread to enter a crit-
ical section – meaning that it will continue running unless it blocks or explicitly yields.
Although this facility is still provided, it is not made available to Java applications
because it could be used to subvert allocations made by the scheduler.

The ways in which a programmer, user or system administrator should controlCPUallo-
cation and the mapping between Java and scheduling-priorities are not addressed here
(the corresponding issues in Nemesis more generally are work in progress [Opa98]).

An issue which this scheduler does not address is how to control jitter – since theCPU

allocated to a thread may be offered at any time within its period it is possible for a
thread to be scheduled slightly irregularly. In the worst case, a thread allocated1ms
every5ms could receive2ms of CPU time consecutively – a first1ms slice at the end
of a period, followed immediately by a further1ms slice at the start of the next. It
is, unfortunately, not possible to address this issue within the context of a Nemesis
user-level scheduler since the jitter experienced by the domain as a whole cannot be
controlled.

3.2 Scheduler implementation

Two priority queues are maintained: arun queueon which all runnable, non-suspended
threads are placed and anallocation queuecontaining all threads which have aCPU al-
location. Threads on the allocation queue are ordered according to when their next

10

allocation is due (soonest first). Threads on the run queue are maintained in the follow-
ing order (first to last):

1. The thread currently inside a critical section.

2. Threads with some remainingCPU allocation. These are held inEDF order ac-
cording to the end of their current period.

3. Threads which have exhausted theirCPU allocation, but which have requested a
share of extra time. These are held in priority order (highest priority first).

4. Threads which have exhaused theirCPUallocation and which have not requested
a share of extra time. Note that this means that threads towards the far end of the
run queue may be in arunablestate (ie neither blocked nor suspended), but that
they should not be scheduled.

Let Hr be the thread at the head of the run queue,Ha be the thread at the head of
the allocation queue,a(t) be the remaining time allocated to threadt during its current
period, letd(t) be thedeadlineof threadt (ie the time by which it should have been
offereda(t) CPU time), letp(t), s(t) andx(t) be the period, slice and extra time flags
of threadt. NOW is the current time.

When activated, the thread scheduler scheduler performs two tasks. Firstly it charges
the current thread with theCPUtime that it has used and then updates the run queue and
allocation queue. Secondly it uses the items at the heads of the queues to decide how
to proceed:

� While NOW > d(Ha) setd(Ha) = d(Ha) + p(Ha), a(Ha) = s(Ha) and
re-adjust the queues.

� If the run queue is empty then block the domain until at mostd(Ha).

� If the run queue is non-empty andHr is in a critical section then set an alarm
timer ford(Ha) and scheduleHr.

� If the run queue is non-empty,Hr is not in a critical section anda(Hr) > 0 then
set an alarm timer formin(d(Ha); NOW + a(Hr)) and scheduleHr.

� If the run queue is non-empty,Hr is not in a critical section,a(Hr) = 0 and
x(Hr) then set an alarm timer formin(d(Ha); NOW + q and scheduleHr. q
is the maximum amount of extra time that a thread may receive uninterrupted –
currently10ms.

� Otherwise the run queue is non-empty but the threads on it should not be sched-
uled. Block the domain until at mostd(Ha).

A count is maintained of how long is spent maintaining these queues and selecting
threads to scheduler. This count is incrementedeach time the thread scheduler is ac-
tivated by the difference betweenNOW and the time that atropos reports that the
domain was scheduled.

11

0 5 10 15 20

t = 11ms

Thread B : 2ms every 6msThread A : 1ms every 5ms Thread C : 1ms every 10ms + extra time

Figure 2: An example of how the CPU may be multiplexed between multiple threads. Real-time

runs horizontally from left to right. Shaded regions show where particular threads are being given

their portion of the CPU time. The regions with a dashed outline correspond to when threads

belonging to a different domain are being executed, outside the control of this scheduler. The time

t = 11ms is used as an example in section 3.3.

allocation queue

run queue

B

t = 15ms

A C

Next allocation time
Allocation

Thread name
t = 12ms

s = 1mss = 1ms

Yes

s = 1ms

t = 20ms

C

No

t =

s = 0ms

A

No

s = 0ms

t =

B

Deadline
Allocation remaining

Extra time flag

Thread name

s = 2ms

t = 20ms

Figure 3: The state of the scheduler’s run queue and allocation queue at the time indicated t =
11ms in figure 2.

12

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

3.5e+09

4e+09

0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10

T
im

e
re

ce
iv

ed
 b

y
th

re
ad

 (
ns

)

Time since start (ns)

Thread-1
Thread-2
Thread-3
Thread-4

Figure 4: The cumulative time received by a number of threads with varying guarantees.

3.3 Scheduling example

Throughout this example there are assumed to be three runnable threads: thread A
is allocated1ms every5ms, thread B is allocated2ms every 6ms and thread C is
allocated1ms every10ms. Only thread C is allocated a share of extra time.

Figure 2 shows a possible way in which the thread scheduler may proceed. At time
t = 11ms, thread A has already received its second allocation of1ms (betweent =
10ms andt = 11ms) and thread B has already received its second allocation of2ms
(betweent = 6ms andt = 8ms). The only thread which still has any allocated time
remaining is thread C which received its first allocation of1ms betweent = 3ms
and t = 4ms. It is allocated1ms every 10ms and is therefore due a further1ms
beforet = 20ms. This means that thread C is at the head of the run queue. Although
threads A and B remain on the run queue, they will not be scheduled because they
have expended all of their allocated time within their current periods. This situation is
shown in figure 3.

Figure 5 shows the stability with which the scheduler is able to provide a CPU-bound
thread with its allocated time. It shows the time that was received by a thread allocated
10% over a 10ms period during 300 consecutive periods for which it was executing.
There were also four other CPU-bound threads running with allocations between 10%
and 20% over a 10ms period.

13

0

500000

1e+06

1.5e+06

2e+06

0 50 100 150 200 250

T
im

e
re

ce
iv

ed
 b

y
th

re
ad

 (
ns

)

Period number

Figure 5: The time received during a single period by a CPU-bound thread. The thread was

allocated 10% over a 10ms period.

3.4 Related work

The NewMonicsPERCsystem [Nil98, NL97] is a dialect of Java that is ‘designed to sup-
port development of cost-effective portable real-time software components’. It there-
fore addresses the issue of processor scheduling. It is designed to support hard real-
time tasks through the use of language extensions which express timing constraints
and the use of bytecode analysis to determine an upper bound on execution time (for
a restricted subset of the Java language).PERCemploys rate-monotonic scheduling to
control the execution of real-time tasks with periodic operation.

Unlike the scheduler described above, thePERC APIallows threads to specify the maxi-
mum jitter that they will tolerate (ie the maximum amount by which the time that they
receive their allocation of the processor may vary from period to period).

4 Run-time compilation

Java bytecodes were always designed with rapid native-code generation in mind [Gos95]
and there have already been several attempts at integrating run-time compilation with
theJVM [HG98, Bot97, Har97].

14

Load
.class blocks

Form

Install
code

Java

Native code

Gen x86

Optimize

Compile

Extended
reflection
interface

Figure 6: The structure of the compiler.

The work described in this section can be divided into two sub-topics – providing a
native-code generator and providing machanisms through which it can be controlled.

4.1 Design of the compiler

The compiler used here is relatively straightforward. As described in section 1, the
motivation is to provide a controllable implementation rather than to establish new
optimization techniques.

It is apparently novel amongst Java native code generators in that the compiler is written
almost entirely in Java (in contrast to the implementations mentioned above). The
situations in which native code is required in this implementation illustrate a number
of potential weaknesses in the design of theJVM. These issues are discussed in [Har98].

4.1.1 Overview

The structure of the compiler is shown in figure 6. There are three phases involved in
the compilation of a Java method:

1. Firstly, the bytecode implementation from the.class file is broken into basic
blocks and the contents of the constant pool areresolvedas described in [LY97].

2. Secondly, native code is generated foreach basic block. This is produced di-
rectly from the stack based bytecode operations (unlike [Bot97, Har97] in which
an intermediate 3-address-code [ASU86] representation is produced). Forward
branches are handled by back-patching the generated code when the target ad-
dress becomes known.

The code generator consists of three modules – a common section, a simple op-
timizer and a target-dependent section. The optimizer and target-dependent code
generator form a layered structure with an identical interface between adjacent
modules. This means that the optimizer can be removed in order to increase the
rate of code generation at the expense of code quality.

15

3. Finally, the generated code is installed so that it will be executed if the method is
invoked in the future.

4.1.2 Register allocation

The Intel Pentium Processor [int96] has four 32-bit general-purpose registers (%eax,
%ebx, %ecx, %edx) and a further four 32-bit registers which may be used with some
restrictions (%esi , %edi , %ebp, %esp). The compiler reserves these for the follow-
ing purposes within generated code:

1. %edi – Currentexecution environmentwhich contains pointers to the current
Java stack frame, the current thread and the current exception (if any) that is
being propagated.

2. %ebp– The bottom of the Java operand stack.

3. %esp– The native stack pointer.

4. %esi – The bottom of the current stack frame’s local variables table.

The location of the Java operand stack and local variable table can be recovered through
the execution environment. However they are always held in registers since their values
are frequently needed.

4.1.3 Optimization

Before optimization (see section 4.1.3) each bytecode instruction is translated to a sec-
tion of native code which is produced from a fixed template parameterized by the cur-
rent depth of the Java stack. For example, the code generated for aniload 1 instruc-
tion, when the Java stack already contains two elements, will load the value from the
first local variable and then store it into the third slot of the Java stack:

movl 4(%esi), %eax ; Local variable 1 -> %eax register
movl %eax, 8(%ebp) ; %eax register -> stack slot 3

This approach means that the general-purpose registers will only be used within single
instructions. Furthermore, the design of theJVM leads to series of bytecode instruc-
tions that transfer values from local variables to the operand stack, then manipulate the
operand stack and then transfer the result back to a local variable. These factors mean
that the generated code would typically contain large numbers ofmovl instructions
performing potentially-unncessary load and store operations.

This effect is illustrated in figure 7 – the Java instructionr = r * m is implemented
by four bytecodesiload 2, iload 1, imul , istore 2.

This provides very little benefit compared to an interpreted implementation or one us-
ing threaded code [Bel73]. The increased code size may even harm performance [DMH].

The simple optimization layer aims to improve the quality of native code by lazily
generatingmovl instructions and by renaming operands.

16

public class Fact Method int fact(int)
{ 0 iconst_1

public int fact (int m) 1 istore_2
{ 2 goto 12

int r = 1; 5 iload_2
6 iload_1

while (m > 0) 7 imul
{ 8 istore_2

r = r * m; 9 iinc 1 -1
m --; 12 iload_1

} 13 ifgt 5
16 iload_2

return r; 17 ireturn
}

}

Figure 7: A Java method (left) and its bytecode implementation (right).

The optimizer maintains details of outstandingmovl instructions which have yet to be
generated. In the above example, the effect of theiload 2 andiload 1 instructions
is to record that local variable 2 has been transferred to stack slot 1 and that local vari-
able 1 has been transferred to stack slot 2 – no native code is generated at this stage.
These mappings can be used when generating code for the subsequentimul instruc-
tion – instead of accessing data in the Java operand stack it can use values directly from
the local variables.

4.1.4 Results

The quality of the generated code is shown in table 1 which compares micro-benchmark
scores achieved with and without optimization. Since neither the optimizer nor the
interpreter will perform inter-block optimization it is reasonable to believe that these
results will scale to large applications and that the overall benefit will therefore depend
primarily on the dynamic instruction mix. Measurements with larger applications (such
as thejavac compiler) show that a two-fold speedup is typical.

4.2 Control of compilation

The compiler described above provides a mechanism for compilation at class or method
granularity. This section describes how the compilation process is controlled, so that
appropriate methods are compiled at appropriate times.

4.2.1 Dispatchers

Compilation is controlled by associatingdispatcherswith particular sub-trees of the
package hierarchy. The methoddispatchMethodImpl is invoked on the dis-
patcher whenever a method in the sub-tree is called for the first time. A dispatcher
is implemented by an instance of a sub-class ofdispatcher.Dispatcher . The
mapping from package names to dispatchers is maintained by static methods ofdis-
patcher.DispatcherRegistry .

17

Without optimizer With optimizer
Nop 5.1 6.6

AddInt 2.9 10.0
AddLong 5.4 5.7
AddFloat 1.2 1.2

AddDouble 1.4 1.4
AddByte 2.4 5.8
AddChar 2.5 5.7
AddShort 2.4 5.8

CastToByte 6.5 10.5
CastToChar 6.1 12.0
CastToShort 5.9 11.9
CastToLong 6.0 7.5
CastToFloat 6.2 7.4

CastToDouble 4.9 5.6
CastFromFloat 1.5 1.6

CastFromDouble 1.4 1.5
MethodCall 2.5 2.8

MethodCall (2 arguments) 2.4 2.9
MethodCall (3 arguments) 2.8 2.8
MethodCall (4 arguments) 2.7 2.9

StaticMethodCall 1.1 1.2
InterfaceMethodCall 1.4 1.5

SuperclassMethodCall 1.0 1.1
SynchronizeOnThis 1.2 1.3
CatchSameMethod 1.1 1.1

CallInterpretedMethod 0.9 0.9
NewArray 5.7 6.6

ArrayAccesses 4.9 5.5
NewInstance 0.8 0.8

IterativeFactorial 3.4 8.1

Table 1: Microbenchmark results showing the speed-up of individual Java operations when com-

piler with and without optimization. Results are expressed relative to the original JDK 1.1.4 inter-

preter which would score 1.0 in each category.

This provides a mechanism for introducingclass-specific processing into standard method
invocations. It is therefore similar to the meta-class facilities provided in Smalltalk [GR83]
or in some extended dialects of C++ [MMAY95]. However, unlike traditional meta-
class designs, thedispatcherscheme provides clearer separation between the imple-
mentation (and perhaps theimplementor) of a class and meta-class.

For example, figure 8 shows how dispatchers may be used to implement a particular ex-
ecution policy. The standard Java classes whose names beginjava.* are registered
with a dispatcher which will load a pre-compiled implementation (perhaps one that
was generated off-line with a highly optimizing compiler). Classes whose names begin
UK.ac.cam.cl.tlh20.* will be compiled in the background (see section 4.2.3).
The single classUK.ac.cam.cl.tlh20.UserInterface will not be compiled
at all. Other classes will be handled according to the system’s default policy. Ambigu-

18

Main

tlh20

cam

ac

UK java

lang

Object Vector

cl

java.* => Load pre-compiled code

* => System default

UK.ac.cam.cl.tlh20.UserInterface

UK.ac.cam.cl.tlh20.*
=> Compile in background

=> Do not compile

UserInterface

Figure 8: Dispatchersare used to control how different sections of the package hierarchy are

executed. In this example, standard classes are loaded from pre-compiled versions, part of an

application is compiled in the background and another part will not be compiled at all.

ity is resolved by selecting the most specific match.

The implementation of a dispatcher can be very straightforward, for example figure 9
shows two complete dispatchers. The first eagerly compiles methods as soon as they
are invoked. The second leaves the methods to be interpreted.

4.2.2 Dispatcher lookup

Dispatcher lookup is implemented efficiently bycaching lookup results.

A 32-bit sequence number is associated with the current mapping from the package
namespace to dispatchers. This sequence number is increased whenever the mapping
could potentially change – ie whenever a new dispatcher is registered. A record is
maintained in each class structure of the last cached lookup and the then-current se-
quence number. A full lookup operation is only performed if the recorded sequence
number is stale.

Figure 10 shows the time taken by lookup operations. These results were measured
during the execution of thejavac Java-to-bytecode compiler on an 800-line program.

4.2.3 Background compilation

By arranging that compilation happens in designatedcompiler threadsit is possible to
bound the impact that compilation can have on the progress made by an application.

This approach relies on using a thread’sCPUallocation as an upper limit on the resource
that it may consume and therefore on the impact that it may have on other concurrently
executing tasks. For example it is possible to allocate some percentage of theCPU to

19

/**
* A dispatcher which causes a method to be
* compiled the first time that it is executed.
* The compilation occurs within the thread which
* invoked the method.
*/

public class JITDispatcher extends Dispatcher
{

private static Compiler compiler = new Compiler ();

public final void dispatchMethodImpl (KCMethod m)
throws DispatcherException

{
compiler.compileMethod (new CompilableMethod (m));

}
}

/**
* A ’no-op’ dispatcher. The JVM will execute
* the method in its usual way.
*/

public class NullDispatcher extends Dispatcher
{

public final void dispatchMethodImpl (KCMethod m)
throws DispatcherException

{
}

}

Figure 9: The Java source code for two dispatcher classes – JITDispatcher compiles meth-

ods upon their first invocation whereas NullDispatcher leaves methods to be interpreted.

compilation and a separate percentage to the interpreter. This control, coupled with
fine-grained thread switching, means that a user will simply see their application exe-
cuting slowly during compilation, rather than stopping completely.

This approach is possible as a consequence of the thread scheduler described in sec-
tion 3 – it simply cannot be achieved with the normal priority-based scheme.

It is possible to have more than one compiler thread – for example one per application
– so that the resources used during compilation can be attributed to the application that
requested it.

By varying the allocation ofCPU time to the compiler thread it is possible to trade in-
teractivity against overall performance. For example running the compilation thread
entirely on extra time corresponds to compiling during idle time whereas a 100% allo-
cation providesJIT compilation.

This trade-off is illustrated in figures 11 and 12 which compareJIT compilation and

20

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

O
cc

ur
an

ce
s

Lookup time (cycles)

Figure 10: Time taken to lookup the dispatcher associated with a method.

interpreted execution against background compilation with a 5%, 20%, 30%, 50% or
75%CPU allocation to the compiler. TheJVM as a whole had an 80% allocation of the
CPU.

The y-axis shows the percentage of a simple benchmark that has been completed while
the x-axis shows the elapsed time. The interpreter’s trace shows a low, straight line
which means that the benchmark is being completed slowly but at a steady rate. The
JIT compiler’s trace shows a steaper line with some discontinuities. This shows that the
benchmark is being completed more rapidly but that there are pauses during which no
progress is made at all. These pauses correspond to sections of the benchmark in which
new methods are executed, triggering compilation.

If a background compiler is given a small 5%CPU allocation then the trace remains
steady and is even shallower than that of the interpreter. This is explained by the
fact that the compiler is operating slowly and fails to finish compiling methods before
execution shifts to another part of the benchmark.

As theCPUallocated to the background compiler is increased the trace approaches that
of theJIT compiler. Note that unlike theJIT compiler, which pauses whenever a new
method is encountered the systems using background compilation simply slow down.

4.3 Related work

The technique of run-time generation of native code has been widely used as a means
of improving the performance of an interpreter.

21

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

%
 o

f b
en

ch
m

ar
k

co
m

pl
et

e

Time

Interpreter
JIT compilter

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

%
 o

f b
en

ch
m

ar
k

co
m

pl
et

e

Time

Interpreter
JIT compilter

5%
20%

Figure 11: JIT compilation and interpreted execution (top), background compilation with 5% and

20% CPU allocation (bottom).

The implementation of a more aggressively optimizing Intel x86 JavaJIT compiler is
described in [ATCL+98]. This employs a similar approach as section 4.1.3 to lazy code
generation, but also integrates a limited form of common sub-expression elimination.

A potentially more effective register allocation policy is used, in which seven of 32-bit

22

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

%
 o

f b
en

ch
m

ar
k

co
m

pl
et

e

Time

Interpreter
JIT compilter

30%
50%

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

%
 o

f b
en

ch
m

ar
k

co
m

pl
et

e

Time

Interpreter
JIT compilter

75%

Figure 12: Background compilation with 30% and 50% allocation (top), and 75% allocation (bot-

tom). The JVM as a whole was allocated 80% CPU time.

registers are available for general use in the generated code. It is not clear to what
extent compiled and non-compiled code can interoperate (enabling this was one of the
motivations for the simple register allocator of section 4.1.2). The impact of compila-
tion on interactive performance is not analyzed.

23

The Deutsch-Shiffman Smalltalk-80 implementation [DS84] uses run-time code gener-
ation to achieve acceptable performance on conventional hardware (at the time meaning
not user-microprogrammable). The generated code is cached inphysical memory since
the time taken reloading code after it was paged out was perceived to be larger than the
time taken to regenerate it.

Consistency between source and generated code is checked at the start of each method
body. Some aspects of the Smalltalk language make it more amenable than Java to
run-time compilation. In particular only an object’s methods are able toaccess its fields
directly. This provides the implementor with a great deal of flexibility in designing an
object’s internal representation.

Many of their observations are still relevent – for example the convenience of a stack-
based intermediate code for generating code quickly, but the need to convert to a regis-
ter based form when generating optimized code.

The issue of how to control compile-induced pauses in execution is not addressed. This
is perhaps a consequence of the necessity of run-time compilation for acceptable per-
formance (many of the initial interpreted implementations of the Smalltalk-80 virtual
machine [GR83] were found to be intolerably slow [Kra84]).

Self [CUL89] is a dynamically-typed pure prototype-based object-oriented language.
It encourages a style of programming in which message send operations are extremely
frequent and, as with Smalltalk, it is designed to provide an exploratory programming
environment.

It has traditionally been implemented using dynamic compilation anddependency links
between source and compiled methods [HCU92, CU91, HU94].

Particular attention is paid to optimizing message passing and to avoiding intrusive
pauses during compilation [H¨ol94]. Polymorphic inline caching is used to implement
message sends efficiently and to provide type feedback information to guide inlining
and compilation. Optimization is performed adaptively and only on heavily-used meth-
ods.

These techniques are applied to Java in the Pep compiler, [Age97]. Pep executes Java
applications by automatically converting them to Self bytecodes and then re-using the
implementation of the Self virtual machine.

Future releases of theJDK are believed to use a more integrated implementation of the
same technique [Gri98].

24

5 Garbage collection

As described in section 1.1, the third important aspect of this implementation is the
garbage collector. The standardJDK [YLJ97] uses a collector which is:

� Partiallyconservative, meaning that it cannot always distinguishbetween pointer
and non-pointer values. All word-aligned 32-bit quantities on the Java and na-
tive stacks are assumed to be pointers if their values are plausible. Implementing
a non-conservative collector for theJVM involves at least a non-trivial analy-
sis to determine whether Java stack locations hold references or scalar quanti-
ties [ADM98].

� Optionally compacting, meaning that the collector can compact regions of free
space in the heap. This is usually achieved by copying live objects so that the
free regions become adjacent and can be coalesced. The extent to which this is
possible is limited by the use of a partially conservative collector.

� Stop and copy, with the consequence that theJVM must stop for a complete col-
lection cycle to occur if memory is to be recovered.

Furthermore, theSystem andRuntime classes provide methods to trigger a collec-
tion explicitly. This can cause extensive cross-talk between threads - even if a thread
has been guaranteed resources by the scheduler, it may be prevented from running
because another thread has triggered a synchronous collection.

The implementation I have developed addresses this issue by providing a concurrent
collector, allowing threads to continue executing during garbage collection. As with
the existing collector, the new implementation is partially conservative.

The standard terminology of tri-colour marking [Wil92] is used throughout this section.
Essentially, awhiteobject is one which has not been scanned, agrayobject is one which
needs to be scanned and ablackobject is one which has been scanned. As with most
collection algorithms, the one described here can be divided into three phases:

1. Constructing theroot setof objects. These are objects which are certainly reach-
able (for example because there is a reference to them in the native stack). They
form the initial set of gray objects.

2. Recursively scanning the gray objects for references. Any referenced objects are
grayed and will themselves be scanned. The scanning algorithm is described in
section 5.1

3. When there are no more gray objects to scan, merging the storage allocated to
any remaining white objects with the free list. When the scanning algorithm
terminates it will have ensured that no gray objects remain and that all reachable
objects are black.

5.1 Baker’s treadmill collector

Baker’s treadmill [Bak91] is essentially a non-copying implementation of the tradi-
tional two-space garbage collector [Bro84]. It was originally proposed to avoid the

25

From

Free

To

New

Figure 13: Baker’s treadmill collector. As objects are allocated the boundary between the newand

freeregions circulates clockwise. As objects are scanned the boundary between the to and from
regions circulates counter-clockwise. If memory is not to be exhausted then the two boundaries

must be prevented from colliding.

repeated and often unnecessary copying of all live objects duringeach collection cycle.

Objects are arranged in a circle within which they are grouped into four non-overlapping
sections:

1. Freesection, containing blocks which are available for allocation.

2. Newsection, containing objects which have been allocated since the start of the
current collection cycle.

3. Tosection, containing objects which were allocated before the start of the current
collection cycle and which must be preserved beyond the end of the cycle.

4. From section, containing objects which were allocated before the start of the
current collection cycle.

This organization is shown in figure 13 in which a collection cycle is partially complete
– there are two gray objects left to be scanned and three white objects which are poten-
tially garbage. At the start of a collection cycle, thenewandto sections are empty and
thefromsection contains all of the allocated objects.

Each instance has two components: an object handle and a field table. This is illustrated
in figure 14. It differs from the standardJDK implementation [YLJ97] in that a 64-bit
header on the field table is replaced by the 32-bitnextandprevpointers in the handle.

5.1.1 Mark bits

Two mark bitsbits are reserved in each object handle to store the object’s current colour.
These are stolen from the bottom two bits of theprevpointer since it is constrained to
point to a word-aligned address.

26

Field 2

Field 1

Field 0

Field 3

....

Next

Prev

Fields

Class

XX

Figure 14: The representation of objects within the JVM. An object handle(left) contains pointers

to the class structure and to the field table. The method table is reachable from the classstructure.

The nextand prevpointers are used to organize all objects into a doubly linked circular list. The

bottom two bits (XX) of the prevpointer are used as mark bits to hold the object’s colour.

Value Sense 1 Sense 2
00 White Black
01 Gray Black
10 Black White
11 Black Gray

Table 2: The two possible interpretations for an object’s mark bits. The sense changes between

each collection cycle.

There are two possible mappings from mark bits to colours, as shown in table 2. The
mapping changes between each collection cycle so that the sweep operation (see sec-
tion 5.3) can be implemented trivially.

These encodings allow objects to be grayed in an identical way, irrespective of the
current mapping. This means that the same write barrier (see section 5.1.2) can be
used in each case.

5.1.2 Write barrier

As described in [DLM+74], it is necessary for the collector and mutator threads to
co-operate to ensure that only unreachable objects are collected. The problem is essen-
tially that the mutator may move the only reference to a white object into one which the
collector has already scanned. This would prevent the white object from being marked
as reachable and it could be collected.

The approach taken here is to ensure that, if an object was reachable from the root-set
at the start of a collection cycle, then at all times during the cycle it will be either:

1. Blackened and in theto section.

2. Reachable from a gray object in thefrom section.

In particular, when the collection cycle is complete, this requires that all objects which
were reachable from the root-set are now blackened and in theto section. Note that
new objects are allocated black and placed in thenewsection.

27

testl %edx, %edx ; was old value NULL?
jz wb_done
orl 8(%edx), 1 ; mark old value gray

wb_done:
...

Figure 15: The implementation of the write barrier.

Free

To

New

From

Figure 16: Objects which have been grayed by the write barrier may exist anywhere in the from
section. These are moved to the boundary between to and from sections and are then scanned

as normal.

This invariant is enforced by introducing awrite barrier which grays any reference that
is overwritten by anaastore , putfield or putstatic bytecode operation. This
ensures that, if an object would otherwise cease to be reachable from the gray objects
in thefromsection then it is itself grayed and will be scanned.

The write barrier is implemented efficiently by a single comparison andor operation
(see figure 15). The comparison is unfortunately necessary to trap situations where a
Null reference is overwritten. Theorl operation sets the least significant bit in the
prevpointer in the object’s handle (see figure 14 and table 2).

This implementation requires a further modification to the original treadmill algorithm.
This is because there may be objects which have been grayed by the write barrier and
are left ‘floating’ in thefrom section. The original algorithm would stop when the
boundary between theto and from sections reaches white objects. This means that
cases such as that shown in figure 16 would leave some gray objects un-scanned.

The change required is to make a pass over the remainingfrom section when the col-
lection cycle appears to be complete. Any gray objects that are found there (such as the
one in figure 16) are moved to the boundary between theto andfrom regions. These
objects are then scanned in the normal way.

Note that the process of examining the remainingfrom section only needs to be per-
formed once. This is a consequence of the invariant described above.

28

5.2 Finalizers

A Java class may define afinalizermethod. This method is executed when an instance
of the class has been detected as unreachable. Finalizers are typically used when an
object is associated with a corresponding resource in the run-time system - for example
an instance of a Java class which represents open files may need to close the underly-
ing operating system file descriptor. However, there are no special restrictions on the
operations which a finalizer may perform. For example it can ‘resurrect’ the object by
making it reachable again. It could also access other objects which are only reachable
through the finalizable one. This life-cycle is explained in more detail in [GJS97].

There are two consequences for the implementation being described here: detecting
finalizable objects and accounting the resources used by executing their finalizers.

5.2.1 Detecting finalizable objects

The collector must identify objects which are not reachable, cause their finalizers to be
executed, and then if they remain unreachable, allow their space to be re-used.

The approach taken is to treat potentially finalizable objects aswhite rootswhich are
treated as normal at the start of a collection cycle, except that they are initially coloured
white rather than gray. Thesewhite rootsremain white after scanning, but if one is
reachable from another object then it is grayed as normal.

When the scanning phase is complete note that any finalizable objects are in thetospace
and their storage is therefore safe from re-use. They can be discovered by examining
the mark bits - any reachable objects with finalizers will have been grayed and any
finalizable objects will have remained white.

5.2.2 Accounting finalizers’ CPU usage

Another issue, which is particularly pertinent in this implementation, is how the re-
sources used by a finalizer are accounted. TheJLS gives the implementation freedom
to choose which thread executes the finalizer.

It is tempting to dismiss finalizer execution as a control-path operation and accept
the (hopefully small) amount of cross-talk that may be introduced by a single shared
finalizer-executing thread. This fits with the intention that finalizers are only used to
free system resources which are not managed automatically [GJS97].

However, the unrestricted nature of finalizers’ behaviour can make this unacceptable.
For example, the following Java source code is legal:

void finalize()
{

while (true)
{
}

}

29

If this is executed in a common finalizer-executing thread then it will loop continu-
osly and prevent any other object’s finalizers from being executed. Sun’sJava De-
veloper Connectionbug-tracking system (http://developer.javasoft.com)
documents this problem, and a related one in which a finalizer containing a synchro-
nized region can cause a deadlock.

The approach taken here is to use a separate finalizer-executing thread for each class
which has been instantiated and whose instances require finalization. This situation is
clearly not ideal since a particular class may be accessed by threads which form part of
more than one application. It does, however, segregate the finalization of completely
unrelated classes – such as those that have been loaded by different class loaders.

5.3 Sweeping unreachable objects

When a collection cycle is complete, thefrom region will consist solely of white un-
reachable objects. This is the same situation as in a traditional two-space copying
collector, in which a collection cycle is finished when all of the reachable objects have
been evacuated fromfrom-space.

Merging unreachable objects with the free list is trivially achieved as a consequence of
holding the objects on a doubly-linked list. It is similarly possible to move the objects
from the oldnewand to regions to form the newfrom region for the start of the next
collection cycle.

It is also necessary to change the colours of the objects to reflect their new status. This
is achieved by changing the meaning of the mark bits rather than by adjusting the values
on each object.

5.4 Results

The standardJDK garbage collector runs when an object allocation cannot be satisfied
by the remaining free space, when it is explicitly triggered throughSystem.gc() or
Runtime.gc() and as a low-priority thread that may run during idle time [YLJ97].
While it is possible to use this new collector in the same manner, it is also possible to
cause it to run continuously in a similar way to the background compiler (as described
in section 4.2.3).

Figure 17 illustrates some results from this approach. These results were obtained with
a fixed 50%CPU allocation given to a mutator thread and various allocations provided
to a concurrent collector thread. The mutator repeatedly compiled and re-compiled a
piece of bytecode to native code using the compiler described in section 4. In these
experiments, the collector was always allocated sufficient time to avoid the mutator
blocking or the heap being expanded. This accounts for the comparatively highCPU

allocations which were made to the collector thread. It is, of course, possible to use a
much-reducedCPU allocation at the risk of blocking a thread during an allocation.

5.5 Related work

There have been numerous papers on automatic storage management. [Wil92] contains
a survey of garbage collection techniques, including those that are suitable for real-time
use. [WJNB95] contains a similar survey of allocation techniques.

30

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0 10 20 30 40 50 60 70 80

F
re

e
m

em
or

y

Collection cycle

15%
20%
25%

Figure 17: The trade-off between CPU allocated to the garbage collector and the amount of free

memory at the end of each allocation cycle.

As with the treadmill collector, many of the existing approaches cannot be used un-
modified as a consequence of the requirement to support finalization and the freedom
with which native code may access heap-allocated objects.

[Ben97] describes the memory manager for the AuroraJVM which supports persistent
as well as ‘traditional’ objects. It uses a hybrid collector which employs different tech-
niques for the different object memories that it supports, including a mostly-copying
generational collector for new objects and a mark/sweep collector for objects which
have been tenured after surviving multiple generations.

The KaffeJVM [kaf97] uses a conservative incremental collector which maintains ex-
plicit lists of white, gray and black objects and uses a conceptually similar write-barrier
to the one described above. However, the implementation of the write-barrier is more
complex because it must test the colours of the two objects and potentially move an
object to the gray list.

An approach used elsewhere [Hen96] is to perform a small amount of collection work
whenever an allocation is made. If the maximum quantity of simultaneously live mem-
ory is known then the amount of collection work, in terms of the number of words to
scan, can be related to the allocation size. This technique has the consequence that
threads which perform frequent and large allocations will contribute most to collecting
garbage. Conversely this approach raises some new problems. Firstly, if an application
has idle time then it may be more appropriate to perform garbage collection at that
point. Secondly, if cross-talk is to be avoided, then multiple threads must be able to
invoke the collector concurrently.

31

6 Conclusion

This report has described techniques that have been employed to produce an imple-
mentation of theJVM with improved support for interactive applications and improved
control over how its resources are used.

A new thread scheduler has been implemented (section 3) which allowsCPU time to
be shared between applications in a more flexible way than traditional priority-based
approaches. A native-code generator has been implemented (section 4), as have mech-
anisms which can be used to control how it is deployed at run-time. Finally, the existing
stop-and-copy garbage collector has been replaced by one that can operate concurrently
(section 5).

32

References

[ADM98] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and
local variable type-precision and liveness in Java Virtual Machines.ACM
SIGPLAN Notices, 33(5):269–279, May 1998.

[Age97] Ole Agesen. Design and implementation of Pep, a Java just-in-time trans-
lator. Theory and Practice of Object Sytems, 3(2):127–155, 1997.

[And98] Mark Andrews. Introducing swing. The Swing Connection,
2(6), May 1998.http://www.javasoft.com/products/jfc/
swingdoc-static/what_is_swing.html% .

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers, Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, USA, 1986.

[ATCL+98] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M.
Parikh, and James M. Stichnoth. Fast and effective code generation in a
just-in-time Java compiler.ACM SIGPLAN Notices, 33(5):280–290, May
1998.

[Bak91] Henry G. Baker, Jr. The Treadmill: Real-time garbage collection without
motion sickness. InOOPSLA ’91 Workshop on Garbage Collection in
Object-Oriented Systems, October 1991. Position paper. Also appears as
SIGPLAN Notices 27(3):66–70, March 1992.

[Bel73] James R. Bell. Threaded code.Communications of the ACM, 16(6):370–
372, June 1973.

[Ben97] Peter Benson. The memory manager for the Aurora Java Virtual Ma-
chine testbed. In Peter Dickman and Paul R. Wilson, editors,OOPSLA
’97 Workshop on Garbage Collection and Memory Management, October
1997.

[BK97] Z. Budlimic and K. Kennedy. Optimizing Java: theory and practice.Con-
currency - Practice and Experience, 9(6):445–464, June 1997.

[Bla94] Richard Black. Explicit Network Scheduling. Technical Report 361,
University of Cambridge Computer Laboratory, December1994. Ph.D.
Dissertation.

[Bot97] Per Bothner. A gcc-based Java implementation. InIEEE Comp-
con, February 1997. ftp://ftp.cygnus.com/pub/bothner/
gcc-java.ps.gz .

[Bro84] Rodney A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. InConference Record of
the 1984 ACM Symposium on Lisp and Functional Programming, pages
256–262. ACM, ACM, August 1984.

[CFM+97] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger,
Robert Wilson, and Mario Wolczko. Compiling Java just in time.IEEE
Micro, May 1997.

33

[CU91] Craig Chambers and David Ungar. Making pure object-oriented lan-
guages practical l. In Andreas Paepcke, editor,Proceedings of the 6th An-
nual Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA ’91), pages 1–15. ACM Press, October 1991.

[CUL89] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of SELF
a dynamically-typed object-oriented language based on prototypes.ACM
SIGPLAN Notices, 24(10):49–70, October 1989.

[DLM+74] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Stef-
fens. On-the-fly garbage collection: An exercise in cooperation. InLan-
guage hierarchies and interfaces, volume 46 ofLecture Notes in Com-
puter Science. Springer Verlag, 1974.

[DMH] James K Doyle, J Elliot B Moss, and Antony L Hosking. When are byte-
codes faster than direct execution? Submitted for publication.

[DS84] Peter Deutsch and Alan M. Schiffman. Efficient implementation of the
smalltalk-80 system. InConference Record of the Eleventh Annual ACM
Symposium on Principles of Programming Languages, pages 297–302.
ACM, ACM, January 1984.

[GJS97] James Gosling, Bill Joy, and Guy Steele.The Java Language Specifica-
tion. The Java Series. Addison-Wesley, 1997.

[Gos95] J. Gosling. Java intermediate bytecodes.ACM SIGPLAN Notices,
30(3):111–118, March 1995.

[GR83] Adele Goldberg and David Robson.Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[Gri98] David Griswold. The Java HotSpot virtual machine architec-
ture. March 1998. http://www.javasoft.com/products/
hotspot/whitepaper.html .

[HAKN97] Joseph Hummel, Ana Azevedo, David Kolson, and Alexandru Nicolau.
Annotating the Java bytecodes in support of optimization. Technical Re-
port ICS-TR-97-01, University of California, Irvine, Department of In-
formation and Computer Science, April 1997.

[Har97] Tim Harris. A just-in-time Java bytecode compiler, part 2
project dissertation, May 1997. University of Cambridge Com-
puter Laboratory.http://www.cl.cam.ac.uk/users/tlh20/
dissertation.ps.gz .

[Har98] Tim Harris. Thesis proposal. July 1998. University of Cambridge Com-
puter Laboratory.

[HCU92] Urs Hoelzle, Craig Chambers, and David Ungar. Debugging optimized
code with dynamic deoptimization.ACM SIGPLAN Notices, 27(7):32–
43, 1992.

[Hen96] Roger Henriksson. Adaptive scheduling of incremental copying garbage
collection for interactive applications. Technical Report 96–174, Lund
University, Sweden, 1996.

34

[HF97] Richard Hayton and Matthew Faupel. FlexiNet – automating application
deployment and evolution.Workshop on Compositional Software Archi-
tectures, December1997. http://www.objs.com/workshops/
ws9801/papers/paper025.html .

[HG98] Tom R Halfhill and Al Gallant. How to soup up Java.Byte, May 1998.

[Höl94] Urs Hölzle. Adaptive optimization for SELF: Reconciling high perfor-
mance with exploratory programming. Thesi CS-TR-94-1520, Stanford
University, Department of Computer Science, August 1994.

[HU94] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls with
run-time type feedback.ACM SIGPLAN Notices, 29(6):326–336, June
1994.

[int96] Pentium Pro Family Developer’s Manual, volume 2, programmer’s refer-
ence manual. Intel Corporation, 1996. Order number 242691-001.

[kaf97] Kaffe source code, version 0.9.2. October 1997. http://www.kaffe.org.

[Kra84] Glenn Krasner, editor.Smalltalk-80: Bits of History, Words of Advice.
Addison-Wesley, Reading, 1984.

[LMB+96] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Ev-
ers, R. Fairbairns, and E. Hyden. The Design and Implementation of
an Operating System to Support Distributed Multimedia Applications.
IEEE Journal on Selected Areas In Communications, 14(7):1280–1297,
September 1996. Article describes state in May 1995.

[LY97] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification.
The Java Series. Addison-Wesley, Reading, MA, USA, January 1997.

[MMAY95] H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa. Compiling away
the meta-level in object-oriented concurrent reflective languages using
partial evaluation. ACM SIGPLAN Notices, pages 300–315, October
1995.

[Nil98] Kelvin Nilsen. Adding real-time capabilities to Java.Communications of
the ACM, 41(6):49–56, June 1998.

[NL97] Kelvin Nilsen and Steve Lee. PERC real-time API. July 1997. NewMon-
ics, Inc.

[Opa98] Don Oparah. Adaptive resource management in a multimedia operat-
ing system. InNOSSDAV ’98: 8th International Workshop on Network
and Operating System Support for Digital Audio and Video, pages 91–94.
University of Cambridge Computer Laboratory, July 1998.

[Ros95] Timothy Roscoe. The Structure of a Multi-Service Operating System.
Technical Report 376, University of Cambridge Computer Laboratory,
August 1995.

[sun97] Java on Solaris 2.6, a white paper. September 1997.http://www.
sun.com/solaris/java/wp-java/ .

35

[sun98] picoJava-II data sheet. (Sun microsystems document number 805-4634-
01), April 1998.

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves
Bekkers and Jacques Cohen, editors,Proceedings of International Work-
shop on Memory Management, volume 637 ofLecture Notes in Computer
Science, University of Texas, USA, 16–18 September 1992. Springer-
Verlag.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
Dynamic storage allocation: A survey and critical review. In1995 In-
ternational Workshop on Memory Management, Kinross, Scotland, UK,
1995. Springer Verlag LNCS.

[YLJ97] Frank Yellin, Tim Lindholm, and JavaSoft. Java runtime internals. In
JavaOne Worldwide Java Developer Conference, 1997.

