
 © 1998 ANSA Consortium

Update

Richard Hayton

Mobile Java
Classes

 © 1998 ANSA Consortium

Mobile Java Objects

l Downloading objects into hosts:

Object

n Applets
n Application Download
n Agents
n Remote Method Invocation

 © 1998 ANSA Consortium

Object

Object = Class + Data

l Data loaded over wire
l Classes are loaded from:

n local disc
n web server (applets)
n elsewhere?

Data

Data

Class

 © 1998 ANSA Consortium

Data

Data

Class

Class Clash

l What happens if we try and load two
objects with different classes, but the
same class name?
n Sun’s RMI Breaks

l Is this a sensible thing to want to do?

?

 © 1998 ANSA Consortium

What do interfaces really define?

ü Operation Name
ü Types of arguments & results
? Names of subclasses of arguments/results

? Names of classes required by subclassed args
? Names of subclasses used by other clients

void op(Foo f)

 © 1998 ANSA Consortium

RMI ⇒ a single class namespace

ûCannot stagger rollout of new class versions
ûCannot have global ‘generic’ services

� Traders, Persistent Object Stores, Agent Places

 © 1998 ANSA Consortium

l There is an analogous problem in functional
languages.

l Consider the Lambda Calculus expression:

 λx.(λy.xy) (z)l = λy.zy
l However, consider

 λx.(λy.xy) (y) = λy.yy ???
l We avoid this by “bound variable renaming”

n We arrange that all variable names inside
the function are local to it

l λx.(λy.xy) (y) = λy.yy

An old problem revisited… .

 © 1998 ANSA Consortium

Multiple Class Name Spaces
l We can apply an analogous solution to bound

variable renaming, by using multiple class
loaders to keep class namespaces separate.

l The namespaces may inherit from other
namespaces, allowing a controlled degree of
interaction

l There are a only a few restrictions
n No circular dependencies allowed
n Packages must be internal to namespaces
n Inherited names cannot be overridden

 © 1998 ANSA Consortium

Network Class Architecture

l The programmer writes applications as before

App A App B

 © 1998 ANSA Consortium

Network Class Architecture

l The programmer writes applications as before
l Classes are organized into bundles

(components ≡ Jar)

 © 1998 ANSA Consortium

Network Class Architecture

l The programmer writes applications as before
l Classes are organized into bundles

(components ≡ Jar)
l Bundles import other bundles and give

explicit versioning information.

 © 1998 ANSA Consortium

Network Class Architecture

l Each bundle is loaded by a classloader
n allows late binding of imported bundles
n bundle classloaders may be sharable or private
n transparent to the application programmer

 © 1998 ANSA Consortium

Network Class Repository
l Class Repositories serve classes to local apps.

n They act as ‘code caches’
n They allow managerial control over class use

l Bundles are published on Web Servers
n As standard JARS (+ extra manifest info)
n Only accessed by class repositories

l A JVM loads individual classes from its class
repository on demand
n including multiple versions of classes

 © 1998 ANSA Consortium

Status - code written so far
l Class Repository

l Federation between class repositories
n global scaling of class dissemination

l Per-JVM Class Loading Architecture
n uses Class Repository and local classes

l Integration with FlexiNet serialization
n Classes can be passed between JVMs

regardless of name

 © 1998 ANSA Consortium

Future Work
l Flexible bundle ‘import’ statements

n Currently bundles import explicit versions
n Could be extended to more flexible information

(e.g. Bundle X, version 2,3 or 4)

l Class Publishers
n Bundles of classes are published on Web

servers.
n The server does not know when (if) it can ever

garbage collect the classes

l Policy Framework
n Which classes should I load?
n Integration with JDK 1.2, signed JARs etc.

