
1 © 1998 ANSA Consortium

Supporting Java for soft real-time
interactive systems

Tim Harris

2 © 1998 ANSA Consortium

Introduction
l Implementing the JVM well is a hard problem:

n Interpreting code gives poor performance
n Compiling code can introduce uncontrollable pauses
n Cross-talk between different threads in the JVM

3 © 1998 ANSA Consortium

Nemesis
l An operating system designed to support soft real-time

multimedia applications
l Provides fine-grained control over resources

n eg CPU, disk bandwidth, network bandwidth

l Provides resource-accountability by avoiding shared
servers and processing within the kernel
n Network protocols are implemented in user-level libraries
n “Client renders” window system

l Security can still be enforced

4 © 1998 ANSA Consortium

Structure of Nemesis

Hardware

User mode

Kernel mode
NTSC

System
dom

ains

D
evice

drivers

Application
dom

ains

Stubs

5 © 1998 ANSA Consortium

Java thread scheduling
l Java normally uses priority hints to control thread

scheduling policy
n Inflexible way of expressing CPU requirements
n Choosing a priority is hard
n Low priority threads can be permanently starved
n Priority inversion is a problem

6 © 1998 ANSA Consortium

New thread scheduler
l New scheduler expresses CPU requirements as:

n Period & slice
n Extra time flag

l Can accommodate a variety of tasks, eg:
n 10% every 1ms interactive program
n 5% every 100ms background task
n extra time only unimportant task

l Extra time is shared out according to priority hints

7 © 1998 ANSA Consortium

New thread scheduler (2)
l Thread A: 1ms every 5ms
l Thread B: 2ms every 10ms
l Thread C: 1ms every 5ms, and any extra time

0 5 10 15

Time (ms)

8 © 1998 ANSA Consortium

Run-time compilation - problems
l Run-time compilation is necessary for acceptable

performance
n Many optimizations in Java can only be made at run time

l Simple ‘Just in time’ compilation introduces
uncontrollable pauses
n Initialization methods are only executed once

and are often large
n Forces compiler to operate quickly and to omit

important optimizations
n Compiled code is thrown away when the program exits

9 © 1998 ANSA Consortium

Run-time compilation
l Provide mechanisms which allow the programmer to

control the compiler and to implement their own policy,
eg:
n Compile quickly on first invocation
n Compile with maximum optimization
n Compile in the background
n Never compile

l Provide a default policy for other applications

10 © 1998 ANSA Consortium

Compilation dispatchers
l A dispatcher class is associated with a region

of the package hierarchy, eg:
n * ⇒ Compile in the background
n java.lang.* ⇒ Load pre-compiled native code
n myapplet.* ⇒ Compile on first invocation
n myapplet.UserInterface ⇒ Never compile

l The most specific match is chosen

11 © 1998 ANSA Consortium

Background compilation
l One thread compiles a method, while another starts

interpreting it
l Control CPU allocation to the compilation thread:

100%0%

Only compile
in idle time

Compile
eagerly

12 © 1998 ANSA Consortium

Background compilation

Ti
m

e

% complete0 100

13 © 1998 ANSA Consortium

Background compilation

Ti
m

e

% complete0 100

14 © 1998 ANSA Consortium

Background compilation

Ti
m

e

% complete0 100

15 © 1998 ANSA Consortium

Garbage collection
l Initial implementations have used non-concurrent

collectors which cannot be interrupted
l A source of cross-talk, eg:

while (true)
{

System.gc();
}

16 © 1998 ANSA Consortium

Baker’s treadmill collector

Scanning

Free space

Allocation

Scanned
To be scanned
May be free
Free

?
?
?

?

17 © 1998 ANSA Consortium

Baker’s treadmill collector

Scanning

Free spaceAllocation

Scanned
To be scanned
May be free
Free

?
?
?

?

18 © 1998 ANSA Consortium

Baker’s treadmill collector

Scanning

Free spaceAllocation

Scanned
To be scanned
May be free
Free

?

?

?

19 © 1998 ANSA Consortium

Baker’s treadmill collector

Scanning

Free spaceAllocation

Scanned
To be scanned
May be free
Free

?
?

?

20 © 1998 ANSA Consortium

Garbage collection
l Allocation and collection can continue in parallel
l Sufficient CPU time must be allocated to the collector so

that it finishes scanning before free space is exhausted
l Can trade time spent collecting against:

n Probability of blocking an allocation
n Memory required

21 © 1998 ANSA Consortium

Garbage collection

0
1

2

3

4

5

6

7
Fr

ee
 m

em
or

y
(M

b)

Collection cycle

10 20 30

22 © 1998 ANSA Consortium

Conclusions & future work
l Java requires more runtime support than other

popular languages
l JVM implementations are large and enforce many

inflexible policies
l JVM is closely tied to the Java language definition

Take a “Nemesis-like” approach by
providing only the essential mechanisms for
security and sharing resources

