
Switchlets and Dynamic Virtual ATM
Networks

J.E. van der Merwe and I.M. Leslie

University of Cambridge, Computer Laboratory
New Museums Site, Cambridge CB2 3QG.

Telephone: +44 1223 334650. Fax: +44 1223 334678.
email: fjev1001,imlg@cl.cam.ac.uk

Abstract
This paper presents a novel approach to the control and management of ATM networks, by al-
lowing di�erent control architectures to be operational within the same network, and on the same
switch. The resources available on an ATM switch are divided into switchlets, each of which
encapsulates a subset of the physical ATM switch resources. A set of switchlets on di�erent ATM
switches combine to form a virtual ATM network. Each virtual network created in this way can
potentially use di�erent control and management mechanisms which are collectively called a con-
trol architecture. For example one virtual network might run ATM Forum signalling, another
might implement an IP switching control architecture, while yet another can be reserved for an
in house secure control architecture. In this manner a new control architecture can be introduced
into a network without disrupting existing services and applications, thereby facilitating change
management in an elegant way. Switchlets and a control architecture from a well known set can
be created on demand to allow the dynamic construction of virtual ATM networks of prede�ned
type. Alternatively the control architecture can be supplied (by a `user') after the virtual network
has been created, thus allowing the dynamic creation of virtual ATM networks of arbitrary func-
tionality. Finally, the paper presents a proof of concept implementation as well as ongoing work
in this area.

Keywords
ATM, Open Switch Control, Virtual Networks, Network Control and Management, Change Man-
agement

1 INTRODUCTION

The inadequacy of existing ATM control and management strategies to meet the demands of
for example multimedia applications, has been widely acknowledged. In addition to the more
conventional approaches by standards bodies and communities (ATM Forum, 1993), (Cole, 1995),
several other solutions to the ATM control problem have been proposed over an extended period
of time. (Both (Crosby, 1995) and (Stiller, 1995), present good comparisons of di�erent approaches
to signalling and control, as well as some historical perspectives on how the standards process
evolved.) More recent approaches such as (Iwata, 1995), (Lazar, 1996b), (Herbert, 1994) and
(Ipsilon Networks, 1996) have proved that although there is general acceptance of the superior
data transfer capability of ATM, ATM control can still not be considered a solved problem. In
this paper, the mechanisms that constitute a particular control and management approach, are
collectively called a control architecture and an instantiation of a control architecture is called

c
IFIP 1996. Published by Chapman & Hall

2 Switchlets and Dynamic Virtual ATM Networks

a control domain. For example a UNI/NNI signalling implementation is an example of a control
architecture, as is the IP switching architecture from Ipsilon Networks(Ipsilon Networks, 1996).
Despite showing some obvious advantages, the uptake by standards bodies of ideas from these

new control architectures have been slow if at all. One of the main reasons for this situation is that
a new control architecture is normally proposed as a replacement of an existing one. Naturally
this leads to a reluctance to move to the new untested control architecture, even if the existing
one is known to be non ideal. One of the major contributions of this paper is a solution to this
problem by allowing di�erent control architectures to be operational simultaneously in the same
network and on the same switch.
An underlying and related problem is that of the control interface provided by the ATM switch.

This is the interface used by the control architecture to manipulate the switch hardware in order to
perform its control and management functions. An example of an operation performed through
this interface is the manipulation of bits in a routing table in order to set up a connection
through the switch. The proliferation of control architectures mentioned above means that a
de�nite requirement for this interface is that it be open, so that di�erent control architectures
can be developed to make use of it.
One approach to the open switch control problem is to de�ne a simple low level interface

which can be used within any control architecture to exercise control of the physical switch.
This approach, followed within the DCAN project (Herbert, 1994), has lead to the design of an
open switch control interface, which is described in Section 2. The DCAN approach still has the
limitation mentioned above that only one control architecture can be operational at any particular
moment in time.
Section 3 addresses this problem by showing how a subset of the ATM switch resources can be

presented to a particular control architecture as a switchlet. The term switchlet is used in favour
of say, `virtual' switch, to emphasize the fact that real resources are allocated to the switchlet.
The switchlet presents the same open switch control interface to its control architecture, which
means that the control architecture is oblivious of the fact that it is not in control of the whole
physical switch.
Switchlets are combined into virtual ATM networks, each of which can potentially use a di�erent

control architecture, i.e. be of a di�erent type. This means that switchlets permit the introduction
of new control architectures into an existing network in a very elegant and controlled manner.
In the �rst instance the action of creating switchlets and combining them into virtual net-

works, is performed by human operators. The process can however be automated so that virtual
networks can be dynamically created. This process is considered in Section 4. The control ar-
chitecture instantiated on the newly created virtual network can be one of a prede�ned set of well
known control architectures. Alternatively, an `empty' virtual network can be created in which
the control architecture is provided by the `user' or the entity that requested the creation of the
virtual network. This allows the implementation of an open multi service network (OMSN) (Van
der Merwe, 1995), in which `any user' can construct a network and become a `network service
provider'.
In Section 5, a proof of concept implementation is presented and discussed, together with some

indication of ongoing work. Section 6 brie
y considers related work and the paper ends with a
conclusion.

DCAN Approach to Open Switch Control 3

2 DCAN APPROACH TO OPEN SWITCH CONTROL

Figure 1 illustrates the control of an ATM switch, by control software forming part of a particular
control architecture, through an Ariel � open switch control interface. The premise of the
DCAN approach is that switch control be opened up by providing a simple, generic, low level
switch control interface on the switch. Switch control software running on a general purpose
workstation, invokes operations on the Ariel interface in order to control and manage the switch.
The switch control software and the Ariel interface have a client-server relationship. The re-

lationship is highly asymmetric because the server is always very simple and lightweight, while
the client (the switch control software) is potentially very complex. For this reason, the control
software is assumed to run on a general purpose workstation, while the Ariel server is simple
enough that it can be implemented on very simple switches. The relationship is also one-to-one
in that a single switch controller talks to a single Ariel interface. (Depending on implementation,
the relationship could also be one-to-many, but not many-to-one.)
The switch control software is responsible for performing all the functions required by a spe-

ci�c control architecture, such as setting up virtual channel identi�er/virtual path identi�er
(VCI/VPI) mappings, call acceptance control (CAC), resource allocation etc. A control archi-
tecture (or strictly speaking control domain) is not limited to the implementation of a single
signalling protocol, for example an implementation capable of both UNI 3.0 (ATM Forum, 1993),
and Spans (FORE Systems, 1995) signalling would still be a single control architecture.
Even though communication between the control software and the Ariel interface is based on

client-server principles, this does not imply or require the facilities of a general purpose distributed
processing environment (DPE). Rather communication between the control client and Ariel server
is considered a `local a�air', for example on a default VCI/VPI pair. In fact the Ariel interface
speci�es the functionality required by an open switch control interface, and implementations
based on di�erent mechanisms can be (and have been) done.

2.1 The Ariel Interface

The purpose of the Ariel interface is to provide an open, generic switch control interface with a
useful set of functions. In particular the Ariel interface should be useful even if detailed knowledge
of the controlled switch is not available. In the ideal case Ariel should provide sensible control of
a switch of unknown type.
The Ariel control interface consists of the following interfaces:
Con�guration - the con�guration interface is primarily used to �nd out what the con�gu-

ration of a switch is as opposed to con�guring the switch.
Port - a port interface is provided for each port on the switch and deals with a port as a

complete entity, e.g. port up/down.
Connections - the connections interface is responsible for basic VCI/VPI mapping, and deals

with quality of service (QoS) issues through a context index obtained (by the controller) through
the context interface.
Context - the context interface bundles QoS abstractions into a single interface and is explained

below in more detail.
Statistics - the statistics interface allows the controller to obtain switch statistics and account-

ing information.

�Credit is due to Sean Rooney of the Computer Lab for suggesting Shakespeare's The Tempest as the basis of our
name space.

4 Switchlets and Dynamic Virtual ATM Networks

port

switch

workstation

Switch Controller
 Type A
 (client)

port

portport

 Open Switch
Control Interface
 (server)

VPI/VCI to controller

Controller invocation
on default VPI/VCI

Ariel

Figure 1 Switch control through the Ariel interface

Alarms - the alarms interface allows the controller to be informed when certain events take
place on the switch.
QoS aware connections are set up through the Ariel interfaces, by �rst creating a context, and

then associating that context with the VPI/VCI mapping during the actual connection setup.
This means that all QoS issues are e�ectively taken out of the Connections interface, which can
be kept simple.
Another reason for separating the Connections and Context interfaces, comes from the real-

ization that the Context interface provides a way to `allocate resources' on the switch, and the
Connections interface provides a way to `use the resources', and that the two need not be tightly
coupled. For example, a control architecture can allocate a certain amount of resources on the
switch by means of the Context interface, and then `over commit' these resources by allowing
more connections to be created than the resources would suggest, because it has some external
knowledge about the behaviour of the connections in question. Note that most current commercial
ATM switches will not allow this separation between the allocation and usage of resources.
Dealing with QoS issues in a generic fashion at a low level is very di�cult, and may not be

possible. The reason for this is that the QoS capabilities of a switch are determined by the
queueing and scheduling policies employed. These, in turn, are what di�erentiate one switch from
another. It is therefore unlikely that all switch vendors would be willing to make such details
about their switches available to be included in an open interface, such as Ariel.
One way of avoiding this problem is to hide the switch queueing and scheduling policies behind

a generic interface. The ATM service categories identi�ed by the ATM Forum (Sathaye, 1995),
provide the means for such an abstraction. This approach is reasonable because it can be expected
that switch manufacturers will build switches with queueing and scheduling mechanisms which
will support a subset of these services. This approach is followed in Ariel. It must be noted that
should lower level details about switch internals be made available by certain switch vendors, this
knowledge can still be used in favour of the abstraction based on ATM Forum service categories.
Five service categories are (currently) de�ned by the ATM Forum, namely:

Switchlets 5

UBR - unspeci�ed bit rate
CBR - constant bit rate
rtVBR - real time variable bit rate
nrtVBR - non real time variable bit rate
ABR - available bit rate
These service categories are parametrised by (in total) four QoS parameters and six tra�c

parameters, a subset of which must to be speci�ed for each service category. Hiding the switch
details behind this abstraction obviously leads to a loss of information. However, enough infor-
mation is still available to perform functions such as call acceptance control (CAC) outside the
switch in the controlling workstation.
All that is required to perform CAC outside the switch is the resource mapping function

that is used by the switch to map QoS and tra�c parameters to switch resources, as well as
knowledge about the resources available on the switch. Such a resource mapping function con-
stitutes signi�cantly less sensitive information than the mechanisms used to implement it. It can
therefore be expected that switch manufacturers will be more willing to provide such information.
If switch speci�c CAC functions are not available, generic CAC functions could be used by control
software. As long as the generic CAC functions err on the conservative side, this will result in
useful (albeit not ideal) switch control.

3 SWITCHLETS

The approach described in Section 2 allows a switch to be controlled in an open fashion and allows
di�erent control architectures to be designed to utilise the Ariel interface. This allows much more
openness and
exibility than is currently the case, but it still means that at any given time, a
single control architecture is operational on a switch and within a network.

workstation

Hollowman

Ariel

Ariel Ariel Ariel

Ipsilon IP
Switching

 ATMF PNNI

Invocation on switch

Invocation on switchlet

switch

Switch Divider Controller
 - Prospero -

Ariel Open Switch Control
 Interface

Figure 2 Creating switchlets

6 Switchlets and Dynamic Virtual ATM Networks

Figure 2 shows how the Ariel interface on a physical switch can be used by a Switch Divider
Controller to create several switchlets. (In keeping with our name space the Switch Divider
Controller is called Prospero.) The Prospero Switch Divider Controller allocates a subset of the
physical switch resources into a switchlet, and makes this available to switch control software
through an Ariel interface. Switch control software, of a particular type, will control the switchlet
by invocations on the switchlet Ariel interface, in exactly the same way as it would on a physical
switch. As an example, Figure 2 shows three possible control architectures namely Hollowman
(Rooney, 1997), IP Switching (Ipsilon Networks, 1996) and the ATM Forum's PNNI (ATM Forum,
1996).
Switchlets can be combined into virtual networks of a certain type, or control architecture. This

is depicted in Figure 3, which shows a network of �ve switches, on which three virtual networks
of di�erent type are deployed.

Type A virtual network

Type B virtual network

Type C virtual network

Physical network

Figure 3 Virtual ATM networks with di�erent control architectures

The switch is completely oblivious of the fact that several control architectures are operational
on it, and maintains the one-to-one relationship between an Ariel server on the switch and a single
Switch Divider Controller. The Prospero Switch Divider Controller provides Ariel interfaces to
the switchlet controllers. Except for the fact that less resources are available to it, the switch(let)
controllers are therefore also unaware of the presence of the Switch Divider Controller. The Switch
Divider Controller polices invocations on the switchlet Ariel interfaces to ensure that switchlet
controllers do not utilise resources not allocated to it, or in any other way interfere with the
functioning of other switchlets.
The switch divider controller is analogous to the small kernel in the Nemesis operating system

(Leslie, 1996), which is responsible (amongst other things) for allocating system resources to
scheduling domains, and for policing the actual usage of allocated resources. Indeed the proposed
model has some similarities with the Nemesis operating system in that real resources are made

Switchlets 7

available to an `application', the control architecture in the network model, which is then allowed
to use these resources according to some internal policy.

3.1 The Prospero Switch Divider Controller

Partitioning of switches into switchlets require the speci�cation of a switchlet in terms of a subset
of the physical resources available on the switch. Resources on a switch that need consideration
include: ports, VPI/VCI space, bandwidth, bu�er space, and queueing and scheduling policies.
Ports and VPI/VCI space constitute the connections resources of a switch and can be parti-

tioned at various levels of granularity:
port level - whereby certain ports within a switch are allocated to a switchlet
VPI level - whereby certain VPI ranges on certain ports are allocated to a switchlet
VCI level - whereby certain VCI ranges on certain VPIs on certain ports are allocated to a

switchlet
Partitioning at the VCI level, being the most general of the three possibilities, is the approach

taken in specifying switchlets.
Bandwidth, bu�er space, and queueing and scheduling policies combine to represent the switch-

ing capacity of the switch. As explained in Section 2.1, the approach taken with the Ariel inter-
face is to hide QoS details behind the �ve ATM service categories. The same approach is followed
in specifying switchlets, whereby a certain percentage of the resources for a particular service
category will be `marked' as belonging to a certain switchlet. The control architecture operating
on the switchlet can then employ the same resource mapping function mentioned in 2.1, on its
subset of resources to perform for example CAC.
A switchlet speci�cation could therefore consist of the number of ports required, and then for

each port the following information:

� The range of VPIs required
� The range of VCIs per VPI required
� The service categories required
� The capacity per service category required (Until a better understanding of the problem of

dividing switch resources have been developed, service capacity will be speci�ed as a percentage
of what is available on the physical switch.)

The Prospero Switch Divider Controller has to know the capacity of the physical switch, and
only allow switchlets to be created until this capacity is exhausted. Allocating resources on the
switch to a switchlet does not involve any invocations (or allocations) on the physical switch.
Rather, Prospero notes the allocation in its internal representation of the switch capacity, and
uses that to police future invocations on a switchlet Ariel interface. Once connections have been
established in a switchlet (and switch), Prospero has to rely on in-band policing mechanisms in
the physical switch, to ensure that connections from one switchlet do not adversely a�ect that
of other switchlets. This requires nothing new on the physical switch, since this functionality is
needed in switches any way.
In the �rst instance Prospero provides a con�guration interface, which can be used by human

operators to create switchlets and virtual networks. Of more interest though, is the dynamic
creation of virtual networks (on demand) by other software systems. Such a Virtual Network
Service is considered in the next section.
Remote access to the Prospero interfaces are required for both static (i.e. done by a network ad-

8 Switchlets and Dynamic Virtual ATM Networks

ministrator on a long time scale), or dynamic (i.e. done by software on an on demand basis) virtual
network creation. Therefore both of these actions presuppose the existence of a bootstrapping
(virtual) network, implementing a bootstrapping control domain. The bootstrap control
domain is therefore any control architecture, contained within its own virtual network, which
provides the required addressing, routing and other facilities to enable communication between
the Prospero instances and other software entities.
In the prototype implementation, an existing IP-over-ATM (virtual) network is used as the

bootstrap control domain. This solution has allowed progress to be made, but is considered too
heavyweight because of its reliance on conventional ATM control. On the other hand the use of IP
in the bootstrap network has attractive properties, and an alternative implementation based on
the much simpler IP switching mechanisms (Ipsilon Networks, 1996) is therefore currently under
investigation. Note that the bootstrapping problem is present in all ATM (and other) networks,
and is not unique to the environment described in this paper. The bootstrapping facility has
however been generalised into something that can provide more sophisticated services.

4 VIRTUAL NETWORK SERVICES

As mentioned in the previous section, sets of switchlets can be combined into virtual networks.
The control domains for these di�erent virtual networks could be instantiations of the same control
architecture, or a di�erent control architecture could be operational in each virtual network, or
any combination of these.
The ability to have di�erent control architectures in the same physical network allows for a very

elegant way of introducing new control software into an existing operational network. The new
control architecture can namely be made operational in its own virtual network while existing
users and applications operate undisturbed in the original (virtual) network. After the new control
architecture has been tested, users and applications can be migrated to it and the partitioning of
switchlet resources can be modi�ed to re
ect the fact that the new virtual network is to become
the default (or only) virtual network.
A more interesting possibility is to provide an on demand virtual network service, in which

switchlets are dynamically created and merged into virtual networks. If this facility is combined
with the services provided by a distributed processing environment (DPE), virtual networks
become a service which can be o�ered, traded and manipulated like any other service. Such a
DPE can be one of the facilities provided within the bootstrap virtual network, and is assumed
in the following discussion.
The use of a DPE (in the bootstrap virtual network) does not mean that all control architectures

have to be implemented by means of a DPE, or even be aware of the existence of a DPE. Indeed,
a major strength of the approach presented here is that a conventional control architecture (e.g.
an ATM Forum UNI/NNI compliant control architecture) can be instantiated in and con�ned to
its own virtual network. On the other hand, new control architectures are being developed that
can make use of the DPE facilities or can even be implemented in a DPE environment. The latter
approach might lead to some simpli�cations in the control architecture. For example, because of
the existence of the bootstrap virtual network it might not be necessary for a particular control
architecture to implement its own bootstrapping procedures but instead rely on the bootstrap
virtual network to provide such services.

Virtual Network Services 9

4.1 Creating a Virtual Network

This section describes the system services required for the dynamic on demand creation of virtual
networks. Figure 4 shows the interaction between the services that are involved in this process.

Trader

Network
 Builder

 Switchlet
 Factory

 Switchlet
 Factory

 Switchlet
 Factory

(1) (1)
(1)

(2)

(3)

(3)

(3)

Figure 4 Dynamic Virtual Network Services

The Switchlet Factory service encapsulates the Prospero Switchlet Divider Controller pre-
sented in Section 3. The Switchlet Factory informs a Trader service about its existence as well
as its switch capacity. (Interaction (1) in the Figure.) Trading is the standard way of matching
service providers and consumers in a DPE (APM, 1993). The Switchlet Factory also exports
interfaces which allow the creation and destruction of switchlets. When a switchlet is created the
Switchlet Factory also exports an Ariel switch control interface.
In order to create a virtual network, a Network Builder service is provided with the `speci-

�cation' of the desired network. This network speci�cation is in terms that hitherto made little
sense after network equipment have been commissioned. An example speci�cation could be,

� UNI 3.1 signalling
� CBR capacity of 15 Mbps (Note that in the case of CBR a percentage of what is available is

trivially converted to bandwidth and vice versa.)
� Between A and B
� With redundancy
� For three hours

Or could be as simple as `Cheap network between A and B'.
The network speci�cation could be the output of another service, or be provided by a human

being.
The Network Builder has knowledge about existing virtual networks, and coordinates the cre-

ation of virtual networks so that, for example, the VCI space allocated to two switchlets in
the same virtual network, and in adjacent switches will overlap. The Network Builder contacts
the Trader and asks for all switches with the required capabilities and capacity according to

10 Switchlets and Dynamic Virtual ATM Networks

the supplied network speci�cation. The result of the query, invocation (2) in Figure 4, is a list
of `interface references' to Switchlet Factories matching the criteria. Using the supplied network
speci�cation and topology information obtained from some topology service, the Network Builder
determines which switches should form part of the virtual network. The Network Builder then
invokes required operations on appropriate Switchlet Factories to create the switchlets.
Two possibilities exist in terms of the type of the control architecture which will be instantiated

on a newly created virtual network:
A prede�ned control architecture from a well known set can be started up when the virtual

network is created. An example would be the creation of an ATM Forum UNI/NNI compliant
virtual network. In DPE terminology this would be called a traded typed virtual network. In this
case the appropriate software entities will be started up by the network builder as soon as the
virtual network has been created.
Alternatively, a blank virtual network or virtual network without a control architecture can be

created. In this case the control architecture is supplied or �lled in by the entity that requested
its creation. This would be called an `anytype' virtual network in DPE terms. In this case the
network builder will not start up the control architecture, but rather will return an interface
reference to each switchlet to the entity that requested creation of the virtual network. Since
this involves the services of the DPE in the bootstrap control domain, these control architectures
will normally be required to make use of the DPE. In this manner a new control architecture
can be composed out of base components. This means that by adding or modifying base
components virtual networks with control domains of arbitrary complexity and functionality can
be constructed. For example, the composed control architecture can use all base components but
replace the routing component with a special purpose one for its particular application.
The newly created virtual network then proceeds to perform its own initialisation, bootstrap-

ping and operation, all of which is con�ned to its `own' switchlets and control domain. Note that
in the case of a conventional control architecture, with its own bootstrap procedure, the oper-
ations of the control architecture can be truly con�ned to its own virtual network. This is not
true if the control architecture use facilities provided by the bootstrap virtual network, or rely on
the DPE in the bootstrap virtual network for its communication. This is an important issue in
terms of the resources, both network and processing, which have to be allocated to the bootstrap
virtual network.
Following the creation of a switchlet, the Switchlet Factory has to update its available capacity

in the Trader, or potentially remove its trader entry if it has no capacity left. The decomposition
of a virtual network happens when the requested time period expires and the Switchlet Factory
claims back switchlet resources, and updates its Trader entry. Alternatively, if an unde�ned time
period is required, the Network Builder will be responsible for periodic `keep alive' invocations
on the Switchlet Factory to keep the virtual network intact.
Something that has not been considered in the above discussion is how potential users of the

new virtual network get to know about its existence. It is assumed that creation of the virtual
network is the result of a request of potential users, or that potential users will be able to obtain
this information through some external mechanism.

5 PROOF OF CONCEPT IMPLEMENTATION

In order to proof the feasibility of the Switchlet and Dynamic Virtual Network concepts, an im-
plementation has been done on one of the ATM networks at the Cambridge University Computer
Laboratory. The only switch resources that were taken into account for this implementation were

Proof of Concept Implementation 11

switch ports and VPI/VCI space. (i.e. none of the capacity and QoS resources mentioned in
Section 3.1 were considered.)
The part of the service ATM network used consists of three Fore Systems ATM switches (one

ASX-100 and two ASX-200s), which interconnect a number of �le servers, workstations, one router
and several ATM video adapters (Fore Systems AVA-200s). These switches are an essential part
of the Computer Laboratory's infrastructure, and as such minimal disruption and downtime were
of key importance. The approach taken was therefore to utilise the existing IP-over-ATM network
provided by means of Spans and UNI Signalling in the Fore Systems Switches as the bootstrap
control domain. The VPI/VCI space available to this bootstrap control domain was however
limited, which means the remainder of VPI/VCI space was made available to a Prospero Switch
Divider Controller implementation. This arrangement is illustrated in �g 5.
The communication mechanism between Prospero and the switch depends on the switch model.

Speci�cally, in the case of the ASX-100, an Ariel server implementation runs on the switch. For
comparison purposes, several Ariel impersonations using di�erent mechanisms were implemented.
This included both message passing as well as remote procedure call (RPC) based implementa-
tions. For the two ASX-200 switches, invocations are made by means of SNMP (over IP provided
by the bootstrap control domain) with a SNMP daemon running on the switch. Communication
with the ASX-100 can also use the SNMP mechanism, however the Ariel implementation is more
e�cient and architecturally cleaner, and is therefore to be preferred.

workstation

Switchlet Controller
 Type A

Ariel Ariel Ariel

Switchlet Controller
 Type B

Switchlet Controller
 Type C

Invocation on switch

Invocation on switchlet

switch

Ariel Open Switch Control
 InterfaceSpans/UNI

Signalling

Available VPI/VCI Space

VPI/VCI Space for Prospero

- Prospero -

 Ariel Server
 or
SNMP Deamon

Figure 5 Proof of concept Prospero implementation

The Dynamic Virtual Networking Services were implemented using an implementation of
the Distributed Interactive Multimedia Architecture (DIMMA) to provide its DPE (Li, 1995).
DIMMA is a framework Object Request Broker (ORB), which provides a common base for the
construction of domain speci�c ORBs.
As mentioned in Section 4 the network builder keeps track of all current virtual networks in

the system. The network builder is also the only entity which is allowed to create and destroy

12 Switchlets and Dynamic Virtual ATM Networks

switchlets. This allows the network builder to perform garbage collection on virtual networks
for which the control architecture malfunctions. Because users are allowed to supply `their own'
control architectures, this is an important function to ensure the integrity of the network as a
whole. The current implementation also provides a trivial access control mechanism, whereby a
list is kept of users who are currently allowed to request creation of virtual networks. In similar
fashion, the current implementation obtains topology information from a manually constructed
topology database.
The implementation described in the above paragraph clearly has some limitations. In particular

the use of SNMP in some cases to talk to the switch is suspect from a performance point of view.
More seriously however from an architectural point of view, is the fact that the Spans/UNI
signalling is still running on the switch and is not using the Ariel interface. The security provided
by the trivial access control mechanism described above, while adequate for an experimental
environment, will also need to be signi�cantly extended in a real world implementation. However,
the fact that the implementation has been done on an existing service network with minimal
disruption is testimony to the
exibility of the switchlet concept.
The virtual network environment described above has been used (and is still being used) in

the Computer Laboratory to implement several novel control architectures (Rooney, 1997), (Van
der Merwe, 1997). Work is currently being undertaken to implement more conventional control
architectures in this environment.

6 RELATED WORK

A speculative application programmers interface (API) for the control of ATM switches was
presented in (Lazar, 1996a). This API seems to provide similar functionality to the Ariel interface
presented in Section 2.1 but contains no interface for obtaining switch statistics or for receiving
alarms. The generic switch management protocol (GSMP) (Newman, 1996) is another low level
switch control mechanism. GSMP closely match the functionality provided by Ariel, but has
a much simpler notion of QoS. In fact, since no QoS issues were taken into account for the
current implementation, GSMP is one of the Ariel impersonations which the current Prospero
implementation can use.
Virtual ATM networks based on virtual paths (VPs) have been proposed as a mechanism

to segregate di�erent tra�c types into more homogeneous (and thus more easily manageable)
groups (Fotedar, 1995), (Farago, 1995). In (Gupta, 1995) the partitioning of resources to form
virtual networks in a packet network is presented. In this case the purpose of the resulting virtual
networks is to reduce connection setup times for `real-time' connections.
In the Xbind project (Lazar, 1996b) networking devices such as switches are abstracted into

virtual entities which export DPE interfaces. Since di�erent algorithms are allowed to operate
on these high level abstractions, some notion of virtual networking is possible within the Xbind
environment. However, since it is impossible to reduce a control architecture, such as for example
a PNNI implementation (ATM Forum, 1996), to a mere set of algorithms, this provides a fairly
limited virtual networking environment.

7 CONCLUSION

The paper presented the concept of ATM switchlets whereby a subset of physical ATM switches
are presented to a control architecture to manipulate as it sees �t. The switchlets are presented to
the control architecture as an Ariel open switch control interface. The Prospero switch divider

References 13

controller, controls the physical ATM switch by means of an Ariel interface on the physical
switch, and polices invocations made by the di�erent control architectures operational on the
switch.
Since the partitioning of switch resources is done at a very low level, very few restrictions are

being imposed on control architectures implemented in the switchlet environment. This allows
both conventional control architectures based on message passing protocols, as well as control
architectures implemented using DPE methodologies to be accommodated.
It was shown how the switchlet concept can be used to introduce new control architectures

into an existing network in a
exible and non disruptive manner. Indeed this has been proven by
means of a proof of concept implementation.
Finally, the paper showed how the switchlet concept can be used to create virtual ATM

networks of arbitrary topology on demand and to run arbitrary control architectures in these
virtual networks. This means that virtual networks becomes a service which can be o�ered, and
traded like any other service in a DPE environment. The control architecture instantiated in
these virtual networks can be known a priori or can be supplied by the entity requesting network
creation. This allows users to supply and manipulate their own control architecture in the created
virtual network.

8 REFERENCES

APM Limited (1993) The ANSA Model for Trading and Federation. Tech. Rep. AR.005.00, APM
Limited, Castle Park, Cambridge, UK.

ATM Forum (1993) ATM User-Network Interface Speci�cation - Version 3.0. Prentice Hall.
ATM Forum (1996) Private Network-Network Interface Speci�cation Version 1.0 (PNNI 1.0).

ATM Forum document: af-pnni-0055.000 .
Cole, R.G., Shur, D.H. and Villamizar, C. (1995) Ip over atm: A framework document. Available

from: http://ietf.cnri.reston.va.us/.
Crosby, S.A. (1995) Performance Management in ATM Networks. Tech. Rep. 393, University of

Cambridge, Computer Laboratory, UK.
Farago, A. et al (1995) A New Degree of Freedom in ATM Network Dimensioning: Optimizing

the Logical Con�guration. IEEE Journal on Selected Areas in Communication, vol. 13,
pp. 1199{1206.

FORE Systems (1995) SPANS UNI: Simple Protocol for ATM Signalling. Release 3.0. FORE
Systems Inc., 174 Thorn Hill Rd, Warrendale PA, USA.

Fotedar, S. et al (1995) ATM Virtual Private Networks. Communications of the ACM, vol. 38,
pp. 101{109.

Gupta, A. and Ferrari, D. (1995) Resource Partitioning for Real-Time Communication.
IEEE/ACM Transactions on Networking, vol. 3, pp. 501{508.

Herbert, A. et al (1994) Scalable Distributed Control of ATM Networks. Project proposal,
University of Cambridge, Computer Laboratory, UK. Project overview available from:
http://www.ansa.co.uk/DCAN/index.html.

Ipsilon Networks (1996) IP Switching: The Intelligence of Routing, the Performance of Switching.
Available from: http://www.ipsilon.com/productinfo/techwp1.html.

Iwata, A. et al (1995) ATM Connection and Tra�c Management Schemes for Multimedia Inter-
working. Communications of the ACM, vol. 38, pp. 72{89.

Lazar, A.A. and Marconcini, F. (1996a) Towards an Open API for ATM Switch Control. Available
from: http://www.ctr.columbia.edu/comet/xbind/xbind.html.

Lazar, A.A. et al (1996b) Realizing a Foundation for Programmability of ATM Networks with

14 Switchlets and Dynamic Virtual ATM Networks

the Binding Architecture. IEEE Journal on Selected Areas in Communication, vol. 14,
pp. 1214{1227.

Leslie, I.M. et al (1996) The Design and Implementation of an Operating System to Support
Distributed Multimedia Applications. IEEE Journal on Selected Areas in Communication,
vol. 14, pp. 1280{1297.

Li, G. (1995) DIMMA Nucleus Design. Tech. Rep. APM.1551.00.05, APM Limited, Castle Park,
Cambridge, UK.

Newman, P. et al (1996) Ipsilon's General Switch Management Protocol Speci�cation Version
1.1. Internet RFC1987.

Rooney, S. (1997) An Innovative Control Architecture for ATM Networks. IM'97, San Diego.
Sathaye, S.S. (1995) ATM Forum Tra�c Management Speci�cation Version 4.0. ATM Forum

Technical Committee - Contribution 95-0013.
Stiller, B. (1995) A survey of UNI Signalling Systems and Protocols for ATM Networks. ACM

Computer Communications Review, vol. 25, pp. 21{33.
Van der Merwe, J.E. and Chuang S.C. (1995) Support for Open Multi Service Networks.

Regional International Teletra�c Seminar, Pretoria, South Africa. Available from:
http://www.cl.cam.ac.uk/users/jev1001/.

Van der Merwe, J.E. and Leslie, I.M. (1997) Service Speci�c Control Architectures for ATM. In
preparation.

9 BIOGRAPHY

Kobus van der Merwe received the B.Eng. and M.Eng. degrees from the University of Pretoria in
1989 and 1991 respectively, and is currently working towards the Ph.D. degree at the University of
Cambridge Computer Laboratory, Cambridge, U.K. His current research interests are in network
control and management.
Ian Leslie received the B.A.Sc in 1977 and M.A.Sc in 1979 both from the University of Toronto and
a Ph.D. from the University of Cambridge Computer Laboratory in 1983. Since then he has been
a University Lecturer at the Cambridge Computer Laboratory. His current research interests are
in ATM network performance, network control, and operating systems which support guarantees
to applications.

