
An Optimised Implementation of the DCAN Divider

Server on the Nemesis Operating System

Simon Crosby and Paul Menage

Tuesday 3 rd March 1998

Abstract

The Divider Server is one of the central parts of the Open Service Sup-

port Architecture around which the DCAN project is based. The initial

implementation of the Divider Server had no support for Quality of Ser-

vice guarantees between multiple clients. This document reports on an

optimised reimplementation of the Divider Server on a platform capable

of providing such guarantees.

1 The Divider Server

The Divider Server presents a network switch switch to a set of clients in the
form of separate switchlets[1]. Each client has control over a subset of the re-
sources of the switch. The main function of the Divider Server is to police
clients' requests and prevent clients from accessing resources which have not
been allocated to them. A full description of the generic form of the Divider
Server is given in [2]. This also contains a discussion about the desirability
of Quality of Service guarantees to clients, but comments that the initial im-
plementation did not support such guarantees due to the OS and distributed
environment being used.

2 Nemesis

The work described in this deliverable has been carried out on the Nemesis
operating system [3, 4]. Nemesis is a vertically structured single-address space
microkernel system developed at Cambridge University which aims to reduce
application cross-talk by providing Quality of Service guarantees for resources
such as processor time, network bandwidth, memory, etc.

2.1 Nemesis kernel

The Nemesis kernel is light-weight, dealing only with memory protection, pro-
cess scheduling and interprocess event noti�cation. The process scheduler makes
the distinction between guaranteed time, which is processor time allocated to
ful�ll the process' QoS contract, and extra time which is spare processor re-
source allocated to those processes which can utilise it. This allows applications

1



to adapt to variations in available processor time, such as by producing com-
plete but low-quality results rather than high-quality but incomplete results.

2.2 Nemesis philosophy

Nemesis tries to reduce QoS crosstalk between applications by removing shared
servers from the data path wherever possible. For example, whereas traditional
operating systems multiplex at each layer in a protocol stack, and only pass
results to the user domain at the application or presentation layers [5], under
Nemesis network tra�c is multiplexed only at a network device driver, which ex-
ists only to check permissions on transmitted and received packets. All protocol
operations are dealt with by the applications, using shared library code [6].

This has the e�ect of reducing crosstalk between applications | packets
destined for an application with a high QoS guarantee will not be held up
behind those of an application with a lesser guarantee. Also, if an application
is falling behind its incoming streams of data, the data can be thrown away
when (or, given su�ciently intelligent hardware, before) it comes o� the wire,
rather than being thrown away just below the presentation layer as happens in
many existing OSs.

3 The Divider Server on Nemesis

Implementing the Divider Server on Nemesis gives signi�cant advantages in
terms of the service guarantees that can be provided to the clients of the net-
work. Figure 1 shows the structure of the Divider Server running on Nemesis.
Various aspects of the architecture are discussed in this section.

3.1 Client Creation

As each client is created by a network controller such as the NetBuilder, an
Ariel[7] interface is constructed for the client. This can be over any sup-
ported Nemesis transport | currently there is support for IIOP over TCP
(CORBA[8]), GSMP over ATM and a Nemesis speci�c lightweight RPC trans-
port over UDP.

The network controller can specify a set of Quality of Service parameters
for the client at this point. Connections will be made to the relevant device
driver to obtain Rbuf [9] data channels to and from the network. The server
will request from the device driver su�cient network QoS to enable it to meet
the guarantee given to the client.

The incoming data channel will have an event endpoint associated with it
| this is used to bind the client into the scheduler.

3.2 Scheduler

The choice of scheduler is not dictated by the architecture of the Divider Server.
Possible implementations might be:

2



AAL5 AAL5 IP IP IP

GSMP GSMP UDP TCP TCP

RPC IIOP IIOP

Management
Interface

Scheduler

Switch Controller

ATM Device Driver
Domain

Ethernet Device Driver
Domain

Data Path

Control Path

Divider Server Selection of next client

Event Endpoint
Data Channel

Figure 1: The Divider Server running in a Nemesis domain

3



Round-Robin The scheduler would serve one request from each client in turn
while there were outstanding requests in its queue. This is a simple and
fast policy, and permits a fair distribution of the Divider Server's time
between all clients. However, it does not permit guarantees to be given
to clients.

Priority-based The scheduler would divide clients into classes of di�erent pri-
orities, and serve requests in a round-robin style from the highest priority
class with outstanding requests. This permits high priority clients to
be given a faster service | but it still does not give proper guaranteed
bounds on service latency, particularly for the lower priority clients.

Earliest Deadline First Each client is allocated a slice of time, and a period
over which this time can be used up. When a client's time has run out in
a particular period, it is blocked until its next period starts. Any left over
time at the end of a period is discarded. See [10] for a fuller description.
This scheduling scheme permits all clients to be given a guarantee | even
a low bandwidth client can be sure that they will receive some regular
processing.

3.3 Operation

When incoming requests (in the form of Ethernet frames, AAL5 packets, etc)
are received at the appropriate device driver, they are delivered straight to the
Divider Server. No protocol processing is performed by the drivers | rather,
the raw packets are delivered. This prevents crosstalk between clients in the
network device driver.

Delivering the packets to the Divider Server causes the event endpoint asso-
ciated with the client to be activated. The scheduler will then mark that client
as having an outstanding request. At some point in the future, depending on
the scheduling policy in use and the client's scheduling parameters, the client
will be allocated time by the Divider Server. At this point, the protocol pro-
cessing for the received packets is performed, and unmarshalling of a request
with its arguments occurs. The request is turned into an Ariel[7] invocation on
the transport-independent part of the Divider Server, containing the policing
functions.

If the request is valid (i.e. refers to resources owned by the client) then it is
passed on to the switch controller to actually set up the VCIs/VPIs requested.

After the request has been completed, the scheduler charges the client for
the time taken to carry out the request, and then makes a new scheduling
decision to select a new client to serve. (This could result in the same client
being served again, if it has appropriate QoS guarantees and more requests
outstanding).

4 Advantages of the Nemesis approach

This section describes some of the advantages experienced by implementing the
Divider Server architecture on Nemesis.

4



4.1 Greater e�ciency

Since the Nemesis network stack is optimised for a Single Address Space archi-
tecture, it can avoid copying data more than is necessary. In a typical Unix
implementation, copying could take place at the following points:

1. The network interface transfers the data from the network in to main
memory.

2. The device driver and kernel copy the data (possibly multiple times) while
reassembling/processing packets.

3. The kernel copies the data to a user bu�er.

4. The user unmarshals the data to form an Ariel invocation.

Under Nemesis, the single address space model means that there is no need
for a copy between kernel and user bu�ers. The Nemesis network protocol
architecture (see [6]) processes data in place wherever possible. This means that
only the copies at stages one and four are needed. This produces a substantial
performance increase, reducing latency and increasing throughput.

4.2 Clients pay for transport overheads

When deciding what transports to allow clients to use, on a typical system
where protocol processing/unmarshalling may be carried out `below the covers'
it is di�cult to account for overheads incurred by using ine�cient transports.
However, restricting client to using e�cient transports will reduce interoperabil-
ity | typically, open standardised transports such as IIOP (used by CORBA)
tend to be ine�cient due to their need to cover all possibilities.

In the Nemesis implementation, a client is charged for all the work carried
out on its behalf; therefore a client who chooses to use an ine�cient protocol
will see a correspondingly smaller number of requests being processed in a given
charged period of time.

4.3 Prevention of Denial of Service attacks

In a typical system, if a client were to start producing requests at a very high
rate, the kernel would spend large amounts of time doing protocol processing
on the incoming packets before having to throw the data away since the Divider
Server would not be making su�cient progress due to being starved of time.
Since the kernel has no knowledge of the scheduling policies being used by the
Divider Server, it cannot prevent crosstalk between clients.

Under Nemesis, the misbehaving client's data channel would quickly �ll up,
causing the network device driver (or the network interface, if it has su�cient
intelligence) to discard packets at the lowest possible level. Packets for well-
behaving clients would not be a�ected.

5



4.4 Multiple Divider Servers

In the same way that multiple clients can be protected from one another using
the described architecture, multiple Divider Servers can be run on the same
Nemesis machine, and each given a certain CPU and network bandwidth allo-
cation. The two Divider Servers will then run without interference between one
another.

5 Conclusion

This paper has described an architecture for a Divider Server supporting multi-
ple clients with di�ering Quality of Service guarantees and running over di�erent
transports. The details of the architecture have been presented, and the ad-
vantages given by this approach have been discussed. The authors believe that
it is clearly the case that just as new networking technologies must be able to
o�er QoS guarantees in network bandwidth, they must be able to o�er QoS
guarantees to clients wishing to set up connections using that bandwidth.

6



References

[1] Kobus van der Merwe. Switchlets and Dynamic Virtual ATM Networks.
Submitted to ISINM'97, July 1996.

[2] Kobus van der Merwe. Open service support for atm. Technical report,
University of Cambridge Computer Laboratory, September 1997.

[3] Timothy Roscoe. The Structure of a Multi-Service Operating System.
Technical Report 376, University of Cambridge Computer Laboratory, Au-
gust 1995.

[4] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The Design and Implementation of an Op-
erating System to Support Distributed Multimedia Applications. IEEE

Journal on Selected Areas In Communications, 14(7):1280{1297, Septem-
ber 1996. Article describes state in May 1995.

[5] David L. Tennenhouse. Layered Multiplexing Considered Harmful. In
Protocols for High Speed Networks, IBM Zurich Research Lab., May 1989.
IFIP WG6.1/6.4 Workshop.

[6] Richard Black, Paul Barham, Austin Donnelly, and Neil Stratford. Proto-
col Implementation in a Vertically Structured Operating System". Local

Computer Networks, 1997.

[7] Kobus van der Merwe. Ariel Open Switch Control Interface. Draft speci-
�cation, October 1996.

[8] Object Management Group. The Common Object Request Broker: Ar-

chitecture and Speci�cation, Draft 10th December 1991. OMG Document
Number 91.12.1, revision 1.1.

[9] Richard Black. Explicit Network Scheduling. Technical Report 361, Uni-
versity of Cambridge Computer Laboratory, December 1994. Ph.D. Dis-
sertation.

[10] C. Liu and J. Layland. Scheduling algorithms for multprogramming in
a hard real-time environment. Journal of the Association for Computing

Machinery, 20(1):46{61, February 1973.

7


