
 © 1998 ANSA Consortium

Advanced Topics
Richard Hayton

APM Ltd

The Mobile
Object Workbench

 © 1998 ANSA Consortium

Talk Overview
l The mobile object workbench

n what is it and why?

l Adding advanced facilities to the MOW.
n True code mobility

n mobile classes not mobile class names
n version management

n Scale
n federated distributed name service

n Security
n distrust between hosts, malicious code

 © 1998 ANSA Consortium

Mobile Object Workbench: Concepts
l Mange units of code - “clusters”

n Units may be applications, applets, agents, libraries… .

l Within clusters
n “standard” Java mechanisms
n uniform trust and management

l Between clusters
n Selectively transparent communications

n Looks like simple method invocation
n perform remote access, security checks, transactions etc… .

 © 1998 ANSA Consortium

Programming the MOW
l Standard distributed programming

n Standard Java programming
n Remote Method Invocation
n Traders / Name Services
n Standard API to local services

l Each distributed component is a cluster
n Clusters can move autonomously
n Some minor limitations on the code within a cluster
n Interconnections between clusters ‘stretch’.

 © 1998 ANSA Consortium

Code Mobility
Richard Hayton

APM Ltd

Mobile Object Workbench
Advanced Topics

 © 1998 ANSA Consortium

Cluster Mobility

Clusters may move between hosts
References between clusters continue to work.

 © 1998 ANSA Consortium

Cluster Mobility = Code Mobility ?
l To move a cluster

n take a snapshot of the cluster’s state
n copy the snapshot to the new location
n fix up references

l Basically an RPC
n newlocation.recieveCluster(Cluster c)

l But… .
n the cluster we are transferring will be a subclass of Cluster
n the destination host must be able to resolve this class.

 © 1998 ANSA Consortium

Resolving a ‘foreign’ class
l Locating the class

n Where can we load the class from?

l Trusting the class
n Who wrote the code? Has it been modified?

l Naming the class
n Have we already loaded a class with the same name?
n Are there more than one version of the class out there?

These issues apply equally to Agents and Applets

 © 1998 ANSA Consortium

Resolving a foreign class
- standard Applet solution

l Locating the class
n load from the remote web server containing the applet

l Trusting the class
n digital signatures (JDK 1.2)

l Naming the class
n don’t care

n each applet is a self contained name space
n use one class loader per applet or per web page

 © 1998 ANSA Consortium

Resolving a foreign class
-why are Agents different?

l Locating the class
n Agent comes from an ordinary host not a web server

n may be less powerful, less well connected

l Naming the class
n Agents talk to each other

n They must share definitions of the classes they use to communicate

n Agents may be related
n There is scope for sharing classes between agent instances

 © 1998 ANSA Consortium

Naive Approach
l Load all classes from the previous host

n they are guaranteed to be the correct version

l Use a completely separate ClassLoader/JVM for each
mobile object

l Trust the programmer to ensure that communicating
clusters are using the same version of a class

Class
Foo'

Class
Foo

 © 1998 ANSA Consortium

Analysis
l Simple & Works

n if the programmer gets it right

l Network load
n inefficient - always load classes from previous host.
n is caching of classes possible?

l Memory usage
n A host may load the same class many times
n each host must store classes in two forms, ‘raw’ and ‘loaded’

l Performance
n cannot optimise same machine communication.

 © 1998 ANSA Consortium

Improving Performance
l 1. Network Class Repository

n networked resource - e.g. one per ISP or per LAN
n cache of ‘foreign’ classes
n also caches digital signature checks

l 2. Shared Class Loaders
n reduce memory usage in a single JVM
n decrease start-up time for a newly moved/created cluster
n allow optimised same JVM cluster-cluster communication

 © 1998 ANSA Consortium

Network Class Repository
l Maps class identifier to class data
l How to we identify classes?

n cannot use classname
n - there may be many version of each class

n cannot impose a new global naming scheme
n package naming is supposed to achieve this already
n prefer something more transparent / automatic

n use secureHash(classname+classdata)
n uniquely identifies a class version
n provides robust global naming

 © 1998 ANSA Consortium

Naming/Storage granularity
l per-class is too small

n large overhead for secureHash
n lookup time is O(log(no classes))
n size of class identifier is large (inefficient RMI)
n high network overhead

l Use ‘bundles’ - e.g. JARs
n smaller overhead for secureHash
n lookup time is O(log(no JARs)) for first class

O(log(no classes in JAR)) for rest
n size of class identifier is small

 © 1998 ANSA Consortium

Size of Class Identifier in RMI (simple)
l First reference to a class

n flag + classname+package name ~40bytes

l Subsequent reference to a class
n class no. 2 bytes

l Assuming 20 classes, 5 references to each
n (20*40)+(100-20)*2 = 960bytes

l Does not deal with multiple classes of the same name
l Does not deal with multiple versions of a class

 © 1998 ANSA Consortium

Size of Class Identifier in RMI (Bundles)
l First reference to a class in a newly referenced bundle

n bundle ID + index within bundle 24bytes+2bytes

l First reference to a class in previously referenced
bundle
n class index 2bytes

l Subsequent reference to a class
n class index 2bytes

l Assuming 2 bundles, 20 classes, 5 references to each
n 2*24 + 100*2 = 248 bytes

 © 1998 ANSA Consortium

Resolving a set of remote classes

receiveCluster(CR,J123,A,B,D,.....)

1

2

3 Class
Repository

Lo
ad

(J
12

3,
A

,C
R

)

4
Validate signatures etc.

Cache for later use

Fi
re

w
al

l

Fire
wall

E

J321

A

C
B

D

F J432

C
D

B
A

Class
Repository

J123

A

CB

D
Load(J123)

Lo
ad

(J
12

3,
B

)

Lo
ad

(J
12

3,
D

) 5

 © 1998 ANSA Consortium

Class Loaders
l Conceptually one per mobile object

n each requires its own name space / versions of classes

l Share classloaders for efficiency
n only need load a class once
n less memory usage / start-up time
n optimised communication

l Problem?
n when may we (transparently) share classloaders?

 © 1998 ANSA Consortium

Sharing Class Loaders

ClassLoaderClassLoader

ClassLoaderClassLoader

ClassLoader

When can we achieve
the correct semantics

with shared class loaders?

?

 © 1998 ANSA Consortium

Which class loader may a class live in?
l Rules:

n All classes in a package must be loaded by the same classloader
n If two packages refer to each other, they might as well be in the

same class loader.
n If package A references package B, but B does not reference A,

then A may be in a child class loader to B.
n Each class loader can only load one class with each name.
n Classes with static data must be treated carefully

l Providing the rules are met
n any class may be in any classloader

 © 1998 ANSA Consortium

Individual Class Loaders

Each agent has its
own class loader

Some classes are
loaded several
times.

Two versions
of one class

 © 1998 ANSA Consortium

Sharing Class Loaders

Most classes are
only loaded once.

Still support for
multiple versions

We can analyse
packages for cross
references off line
(In Repository)

 © 1998 ANSA Consortium

Summary
l Code may be authored in many places

n cannot rely on classnames to uniquely identify classes
n we can use secure hashes as a better identifier
n Class repositories act like web caches

l We may need to load several versions of a class
n ‘True’ versions, due to ageing code
n Different classes with the same name.

l We must support multiple class loaders
n analysis allows us to reduce the number needed.

 © 1998 ANSA Consortium

Scaleable Object
Relocation

Richard Hayton
APM Ltd

Mobile Object Workbench
Advanced Topics

 © 1998 ANSA Consortium

Distributed Relocation Service
l Locating an object that has moved

n even if some hosts have failed

l Managing many millions of objects
n created at many hosts, all over the world

l Dealing with deceit
n claims by a host that it has an object it does not
n malicious reuse of ‘unique’ names
n one host or object masquerading as another

 © 1998 ANSA Consortium

© 1997 ANSA Consortium

l Usual approach is Tombstones… ..but!
n Cost of resolution can be high
n Very susceptible to host failure
n Hosts accumulate ‘garbage’
n Optimisations are susceptible to malicious hosts

l Other issues when considering alternatives
n Cost of object creation and movement
n Background processing

Locating a moved cluster

 © 1998 ANSA Consortium

New Name Resolution Scheme
l Designed for a large scale environment with poor

reliability and mutual distrust
n i.e. for FollowMe in a WWW environment

l Implemented as a set of “stages”
n each is a refinement on the previous stage

l Current status
n stage one is implemented

 © 1998 ANSA Consortium

Approach
l Assume objects don’t move

n low object creation cost
n only use auxiliary mechanisms when a move occurs

l Allow for any host to fail
n objects are not permanently tied to their first location
n reduce dependence on ‘client’ hosts

l Optimise from experience
n allow the cost of relocation to be spread independently

from movement.

 © 1998 ANSA Consortium

Stage One: Directory Based
l On cluster creation:

n choose a directory d but don’t use it yet
n Name the cluster (d,current address)

l On move
n update directory d with old addressðnew address

l On lookup
n try the previous address, if it fails contact d

Directory

 © 1998 ANSA Consortium

Analysis
l Security/Integrity

n High trust in directory
n Clusters can choose an appropriate directory
n Hosts cannot fool others into thinking they have a cluster

l Move/Lookup Cost
n At most two additional calls
n One may be to a distant host if the directory is ill placed

l Reliability
n Require access to 1 host out of 1 possible host

 © 1998 ANSA Consortium

Stage Two: Reducing Move/Lookup Cost
When the system decides that a directory is no longer
suitable for a particular cluster:
l Pick a more suitable directory d2

n Update the cluster’s name to (d2,current address)
n Update the old directory d with (current addressðd2)

n Tombstoning directories

l Analysis
n Lookup/Move: 2 calls (directory normally near)
n Reliability: n+1 hosts out of n+1 after n directory moves

DirectoryDirectory

 © 1998 ANSA Consortium

Stage Three: Improving Reliability
l Each directory is given a well known parent
l A directory may copy any entry to its parent
l If a directory is uncontactable, the parent is asked

l Analysis of reliability:
n n hosts out of 2n (each tombstone or its parent)

l Analysis of background cost
n Low - if we only copy to parent when we create tombstones

 © 1998 ANSA Consortium

Catch the Birdie… ...

© 1998 ANSA Consortium

Directory

DirectoryDirectory

<- Parent ?

 © 1998 ANSA Consortium

Catch the Birdie… ...

© 1998 ANSA Consortium

Directory

DirectoryDirectory

<- Parent ?

 © 1998 ANSA Consortium

Catch the Birdie… ...

© 1998 ANSA Consortium

Directory

DirectoryDirectory

<- Parent ?

 © 1998 ANSA Consortium

Catch the Birdie… ...

© 1998 ANSA Consortium

Directory

DirectoryDirectory

<- Parent ?
Copy
Entry

 © 1998 ANSA Consortium

Catch the Birdie… ...

© 1998 ANSA Consortium

Directory

Directory

Directory

<- Parent ?

 © 1998 ANSA Consortium

Stage Four: Reduce Garbage Accumulation
In the current scheme a directory can never forget an
object that has not been deleted, even if it is ‘long gone’

l Solution:
n A directory may copy an entry to its parent, and delete

the local reference
n When a client requests a lookup of an unknown name,

the directory bounces the request to its parent
n NB. There must be a short chain of parents or invalid

names will take a long time to return definite failure on
lookup

l Stage Five: mobile places… ...

 © 1998 ANSA Consortium

Deployment of Directories

l Level 1 directories
n On servers. Approx. 1 per LAN
n have parents at level 2

l Level 2 directories
n Backup servers. Approx. 1 per LAN
n no parents

 © 1998 ANSA Consortium

Managing many moves
l Directory stores old name ð new name
l If an object moves many times there will be many

entries
n address1 ð address2
n address2 ð address3
n …

l We may not delete any of these entries,
as other objects may hold any of the addresses.

 © 1998 ANSA Consortium

Optimisation
l Split the address into two parts.

n address = (ID,current address)

l Then we need only store the latest address
n (ID,address1) ð (ID,address2)
n (ID,address2) ð (ID,address3)
n …

becomes
n ID ð address3

l This is a common, and simple, optimisation
n However, it introduces a security loophole

 © 1998 ANSA Consortium

Attack on Optimised Relocation Service
l Attack

n Someone else can reuse a ID
n A directory cannot tell if a ID is original or forged
n A directory storing a forged ID cannot store the original ID

as well (it cannot tell them apart)

l Solution
n Used the optimised approach until we get a clash
n assign a new identifier whenever it is needed
n Does not prevent attack, but reduces it to a resource attack

 © 1998 ANSA Consortium

Two clusters with the same
identifier

Directory
S =

Directory
S =

Directory
Directory

Directory

 © 1998 ANSA Consortium

No problems if they don’t share directories

Directory
T = Directory

T =

Directory
T =

Directory
T =

Directory
T =

 © 1998 ANSA Consortium

Change IDs to avoid clashes

Directory
T =
X =

Directory
T =

Directory
T =

Directory
T =

Directory
T =RENAME

 © 1998 ANSA Consortium

Other attacks
l A host can masquerade as a one containing object A

and then tell the relocation service that A has moved.
n We must use authentication when talking to relocation

service
n A simple scheme is sufficient

n we only care that two messages have the same origin
n keys can be created dynamically - no management overhead

n However, there may be authentication services for other
purposes
n make use of whatever is available

 © 1998 ANSA Consortium

Summary
l Managing a world-wide name space is tricky

n Security has to be an issue
n network partition is inevitable
n cannot predict optimal deployment in advance
n centralised co-ordination doesn’t work

l We have a solution
n our architecture meets the above needs
n it does not require global consensus
n it allows a mixture of (in)secure / (un)robust /

(un)replicated services

