
1

A Mobile Object Workbench

Michael Bursell, Richard Hayton,
Douglas Donaldson, Andrew Herbert

APM Ltd
Poseidon House, Castle Park, Cambridge CB3 0RD United Kingdom

Email: apm@ansa.co.uk Fax: +44 1223 359779

Abstract
Existing mobile agent systems are often constructed with a focus on intelligence
and autonomy issues. We have approached mobility from a different direction. The
area of distributed systems research is quite mature, and has developed
mechanisms for implementing a “sea of objects” abstraction. We have used this as
our starting point, and added to this the ability for objects to move from host to
host, whilst maintaining location-transparent references to each other. This
provides a powerful and straightforward programming paradigm which embraces
programming language semantics such as strong typing, method invocation and
encapsulation, rather than rejecting them in favour of untyped messages. We have
built a Mobile Object Workbench on top of a flexible Java middleware platform. The
Mobile Object Workbench is being used to develop a mobile agent system, and to
run application software. In this paper we examine the philosophy and design of
the Mobile Object Workbench, and describe how this is being extended to provide a
security framework oriented towards agents.

Corresponding author:
Michael Bursell
APM Ltd

Poseidon House
Castle Park
Cambridge CB3 0RD
UK
phone: +44 (0)1223 568919
fax: +44 (0)1223 359779
mike.bursell@ansa.co.uk

2

1. Introduction
Software agents, and in particular mobile agents, are currently an area of intense
interest both within the research community and the commercial sector[1][2]. Current
agent systems typically follow a message-based paradigm[3].
Distributed systems research takes an opposing view: building on a programming
language’s features such as method invocation and strong typing, it attempts to
extend the language’s capabilities transparently to support distributed applications.
The most obvious example of this is in the area of remote procedure (or method)
invocation. The abstraction this extension provides - the ability to invoke procedures
on remote object - is often referred to as creating a “sea of objects”. In such a “sea”,
objects may reference and invoke each other regardless of their relative locations.
The most common examples of this are CORBA[4] and DCOM[5]. The overall
architecture of this style is RM-ODP, which shows how to engineer in “abilities” such
as interfaces on objects[6].
We believe that in order to develop mobile agents, it is first logical to extend the “sea
of objects” abstraction to include the possibility that objects may move from host to
host. This movement should be transparent, in that references and invocations made
on the object which has moved should continue to function, without the application
programmer having to take special steps to maintain their validity. Such a “Mobile
Object Workbench” provides a generally useful distributed computing paradigm, one
obvious application of which is to underpin mobile agents.
The Mobile Object Workbench we describe, and have implemented, is not an agent
system, but, as in the ESPRIT[15] project within which it has been developed, will act
as the basis for the implementation of an autonomous mobile agent system by other
researchers.

2. Principles
In this section, we describe the basic principles which we have adopted in the design
and implementation of the Mobile Object Workbench. Throughout, we have striven to
extend, rather than replace our base language, Java, at both the language level and
the distributed systems level. This principle, we believe, makes for ease of use (as we
building on abstractions which are already familiar).
Where possible, we have also aimed for “selective transparency”, particularly of
engineering mechanism, so that application programmers need not concern
themselves with the details of the implementation or design in order to use the
system, although they retain the ability to set policy and respond to errors.

2.1. Encapsulation
Language level objects are typically too small to be a useful unit for mobility. It would
not generally be useful to provide mobility for a simple string. A mobile agent is more
likely to consist of several language level objects, with a single object as its ‘root’. It is
neither helpful or useful to move the constituent objects individually, and instead we
need a grouping mechanism or policy for deciding which parts of a program should
move together.
We introduce the notion of a cluster as both a grouping and encapsulating construct to
address this issue. A cluster is an encapsulated set of objects in the sense that

3

references that pass across a cluster boundary are treated differently from those
entirely internal or external to it. In particular, when resolving an external reference,
the system may have to locate a cluster on a remote machine (possibly after it has
moved) and may have to perform security checks, such as access control and auditing.
Even when two clusters are located on the same host, they still communicate through
the encapsulation boundary via system-provided mechanisms, although the bottom
“transport” can be via local memory rather than the network. This allows clusters to
protect themselves from each other, and gives them some degree of autonomy.

2.2. Interfaces
Given encapsulation, there must be some way for objects to communicate across
encapsulation boundaries. We restrict references across encapsulation boundaries to
be interface rather than object references, following the ODP model of the interface as
the point of access to an object, and thus allowing the implementation of objects in
different clusters to evolve independently. Binding at interfaces has the key property
of preventing sharing of state between clusters. We arrange that when a reference to
an interface is passed across an encapsulation boundary, then it is passed by
reference. However, when a reference to an object is passed across the boundary, then
the object is copied.
These semantics are different from both Java RMI and CORBA. Java RMI passes
objects by reference unless they inherit from a particular class (java.rmi.Remote).
CORBA currently lacks the ability to copy objects transparently, and passes
interfaces by reference. Using our semantics we see identical treatment of both the
local and remote case (apart from the possibility of communications exceptions). We
anticipate that as ongoing work in the OMG on a Java to CORBA binding and support
for “Objects by value” converges, a solution akin to ours will be selected.
No methods on an object are available for use by objects outside the encapsulation
unless they are exported as an argument or result. For example, a cluster may export
interfaces and these interfaces can be imported by other clusters. No other methods
are available to any object outside the encapsulation boundary.

2.3. Location Transparent Communications
In order to maintain transparency of use of interfaces, some mechanism must be
provided to allow communications between clusters which are remote from one
another. Like other distributed object systems, the Mobile Object Workbench makes
use of stubs to represent remote interfaces (i.e. interfaces from outside the cluster).
This means that there is no special API for communications in the Mobile Object
Workbench; communications is as close to the pure language semantics as possible,
and transparency is to a large extent preserved. The MOW API is entirely related to
the life cycle and movement of clusters.
Unlike RMI or CORBA we do not have an off-line stub generator. Instead we
generate stubs on demand. This has the important benefit that since stubs are locally
generated they are trusted, rather than potentially hostile, code.
It has long been a point of contention in distributed systems research as to whether
true location transparency is achievable, or indeed desirable. In FlexiNet, the ORB
upon which the MOW is built, the approach taken is for selective transparency.
Ordinarily, remote communication is transparent. However, the application or
middleware programmer can link in “binding objects” which describe special action to
be taken; for example an application programmer may provide code for ruling on
access control policy, or for explicitly choosing a communications protocol. These

4

binding objects are invoked when interface references are initially bound, rebound
after Mobile Object migration, or when failures occur.

2.4. Autonomy of Movement
We have stated that a basic facility is for clusters to be able to be moved from one host
to another. An important issue is who is at liberty to decide when a cluster should
move. We note that a cluster cannot move at an arbitrary point in time - it may have
to release resources cleanly, and it is therefore not reasonable to command a cluster’s
movement externally - rather, the process should be within the cluster. This does
not, of course, preclude a request for movement being made from an external entity.
As agents may be malicious or erroneous, it is essential that a cluster can be destroyed
by an external signal, and this is provided. Thus our Mobile Objects are autonomous,
as might be expected to meet the needs of agent-based applications.

2.5. Security
“Security” is a catch-all term used to describe a variety of issues, not all always well
differentiated. Some autonomous mobile agent systems can be seen as lacking in
their approach to some of these issues, and we have found that the approach of
designing and engineering from the point of view of a mobile object system, allowed
us build on established security principles[7].
We identify six basic areas of security concern within the Mobile Object Workbench:

1) host integrity - protecting the integrity of a hosting machine and data it contains
from possible malicious acts by visiting objects.

2) cluster integrity - it should be possible to determine if a cluster has been
tampered with, either in transit or by a host at which it was previously located. We
may wish to allow hosts to modify parts of a cluster (e.g. data) but not others (e.g.
code).

3) cluster confidentiality - a cluster may wish to carry with it information that
should not be readable by other clusters, or by (some) of the hosts which it visits.

4) cluster authority - a cluster should be able to carry authority with it, for example
a user’s privileges, or credit card details. To provide this we need both cluster
integrity and cluster confidentiality.

5) access control - hosts should be able to impose different access privileges on
different clusters that move to it. Clusters and hosts should also be able to enforce
access control on exported methods.

6) secure communications - clusters and hosts should be able to communicate using
confidential and/or authenticated communication. Some applications may also
require other security features, such as non-repudiation.

We believe that unless all of these aspects of security are addressed, any mobile
object system will not prove secure enough for real world applications, and we have
therefore adopted the principle of including security issues from the outset, rather
than as an “add-on”, bolted on at a later date.

3. Related Work
Several agent systems have provided script-based languages, rather than utilising a
systems programming language (e.g. Telescript - Odyssey [8]). We believe this is
harder for application programmers to use, and requires considerably more

5

infrastructure to allow the interworking of agents, with other non-agent technologies,
such as JNDI [9], JDBC[10], CORBA[4], etc..
Other agent systems are built as extensions of an existing language, but with new
abstractions for inter-agent communications. For example, Aglets[3] allows agents to
be built using Java, but they must communicate using untyped messages.
The nearest to our approach is Voyager [11],which deals, however, with individual
objects rather than clusters. We believe our approach gives more scope for the
management and securing of mobile entities, as intra-cluster and inter-cluster
communications are differentiated.
The OMG’s Mobile Agent Facility[12] is an important piece of standardisation work
being done in this area. Whilst we see the MOW as providing basic facilities to be
extended by an agent implementation, in practice we provide the majority of the MAF
facilities, and extension of the Mobile Object Workbench to provide a MAF-compliant
platform is one possible implementation path in the longer term of the project.

4. Design
4.1. Encapsulation
In the Mobile Object Workbench, both threads and objects are encapsulated. The
mechanisms are illustrated in Figure 1 - Clusters, showing internal and external
communications, which shows four clusters. One of the communications bindings
between clusters is expanded to show that invocation of an external interface
reference is achieved using a proxy (stub) with a communications stack.

Cluster
Location
Lookup

Interface
Multiplexing

+
Cluster Locking

STUB

FlexiNet Communications Framework

1. Invocation

2. RMI via
FlexiNet

3. Perform
Invocation

Figure 1 - Clusters, showing internal and external communications

In order to encapsulate clusters, we must distinguish between two types of
references:
i) references between objects within the same cluster
ii) references between objects in different clusters.

6

As objects within a cluster share the same privileges, and are always collocated, these
references can be ordinary language level references. References that cross the
encapsulation boundary appear to the programmer to be the same, but in fact are
implemented via interface proxies and (potentially) remote communication. Each
cluster is created with a reflexive communications stack, and all references to
external clusters or services are bound to the communications stack. We ensure that
any references passed or returned in method invocations using proxied interfaces are
also treated in a similar way. This ensures that a cluster remains encapsulated. Any
objects created within a cluster become part of the same cluster as the object
performing the creation, and a special mechanism is used to create new clusters.
Objects and data may be passed in method invocations over the encapsulation
boundary, and are passed by copying.
As clusters represent potentially distrusting pieces of code, it is important that one
cluster cannot adversely affect another. In particular one cluster must not be able to
invoke a method on a second cluster, and then destroy the thread performing the call,
so as to leave the second cluster in an inconsistent state. Equally, if a cluster crashes
or intentionally blocks whilst servicing a request, the client must be able to recover,
and must not also fail or block indefinitely. In order to achieve this degree of strong
encapsulation, we de-couple all threads that enter or leave a cluster, so that the
failure of the caller and callee are independent.

4.2. Location transparent communications
All references to interfaces within the Mobile Object Workbench are location
transparent by default, that is, the application/agent performs the same action,
whether a reference is to a local or remote object, or whether it is to an object that is
currently in transit. A call to a remote object may result in an exception if the object is
unreachable within a pre-set interval (or if the access is disallowed after access
controls). These exceptions may be caught, or may be ignored and allowed to
propagate through the client code.
When an interface reference is returned from a remote call, a local stub is
transparently constructed on-the-fly from the interface definition using Java
introspection. This contains references to a communication stack, and the name of the
remote interface. When a call is made on the interface, we first attempt to locate the
remote interface using the last known location. If the remote interface happens to be
on a mobile object that has moved, the remote host will raise an exception. This is
caught within the infrastructure on the client machine, and a secondary mechanism is
then used to relocate the cluster. We are constructing a robust directory-based
distributed location service to perform this task, though the architecture is flexible,
and other approaches could be employed. This is an advantage over other systems
which ‘hard-wire’ protocols such as forwarding tombstones, which are inappropriate
for highly mobile long-lived objects.

4.3. Movement
The encapsulation provided by clusters allows a straightforward implementation of
mobility, since both objects and threads are encapsulated. The basic process for
moving a cluster is creating a snapshot of a cluster, copying it, restarting the new
snapshot at the new place and discarding the old. The real issues are ensuring that a
consistent state is moved, and providing robustness if a host or network fails during
movement.
A Mobile Object is defined as a cluster with mobility capability, and a simplified view
of migration process is as follows:

7

1) Mobile Object “decides” to move

 In order to allow the move to proceed, we must guide the cluster towards a consistent

state. To do this we block any new method calls being made on this cluster from
outside its encapsulation boundary. Method calls that are already proceeding are
allowed to complete, and it is the responsibility of the mobile cluster to ensure that
any threads internal to the cluster are terminated, or allowed to run their course.

2) The infrastructure monitors the Mobile Object until there is no more thread

activity within it

 The encapsulation and thread management mechanisms provide introspection for

this. When the activity has stopped, the object is in a consistent state.

3) The Mobile Object is copied to the destination host, and the relocation service is

informed of the new location

 This is performed in a number of stages to allow rollback or rollfoward if a failure is

detected. A critical failure can result in an object being discarded by both the
source and destination host. These semantics were preferred to the possibility that
both hosts might restart the Mobile Object in a network partition, which would be
likely to cause inconsistency in the system and applications based on it.

4) A synchronisation call completes the process

A restart method is called on the newly copied cluster, and the old cluster is
discarded. The restart method may recreate transient resources, start internal
threads, or perform any other processing. Any previously blocked method
invocations are then allowed to proceed, and will throw object moved exceptions
which will then lead to a rebind to the new host.

4.4. Autonomy
As a cluster has access to objects within it, in order to provide autonomy we must add
sufficient introspection for a cluster to be able to determine when it has no active
threads, and sufficient access rights to allow a cluster to create a remote copy of
itself, and to update the relocation service.
As security was a primary concern of the MOW, the internal naming scheme for
clusters is designed in such a way that a malicious program cannot spoof the
relocation service, such that another entity might believe that a cluster had moved
when it had not, or believe that it had moved to the wrong location. To prevent this
form of denial of service attack, we arrange that cluster names include the current
host name (to prevent malicious claims of ownership), and arrange that only the
current host may inform the relocation service of a cluster migration (to prevent
spoofing). We also use authentication of hosts, to prevent one host acting as another.
The standard encapsulation mechanism is all that is required to enforce the autonomy
of movement. If a cluster never exports the interface containing the move method,
then this is not accessible outside its encapsulation boundary. Of course a malicious
host can always circumvent this (or any other) mechanism, which is why we employ

8

cryptographic security measures so that we can detect if a cluster has been tampered
with, or if a malicious host is attempting to impersonate a trusted place.

4.5. Security
Host integrity and access control to host resources are managed by encapsulation,
and extending Java security manager abstractions[13]. Secure communication is being
addressed by using SSL[14] for authentication, confidentiality and integrity of
communications.
Cluster integrity, confidentiality and authority are the unique issues to be addressed
in the context of mobile agents, particularly in open systems like the Internet. We
are designing a mechanism for cryptographic sealing of parts of a cluster, and
declarative policy specification of which hosts may examine and modify which parts of
a cluster, and the cross dependencies between the data items.

5. Implementation
5.1. Introduction
The Mobile Object Workbench is being built within the context of the FollowMe
European ESPRIT project (no. 25,338), which commenced in October 1997[15].The
Mobile Object Workbench is being constructed as an extension of a Java middleware
platform called FlexiNet, which was developed at APM during the last eleven
months[16].

5.2. Mobile Objects and Agents
As previously stated, agents are a particular specialisation of Mobile Objects.

FollowMe Host

Network Address
Mobile
Object

resides at
Object

moves
between

n

n resides at
n

Place

Host
Profile

Agent

Agent
Placemoves

between

supplied with

reflects

exists in

Physical
Context

Figure 2 Places and Hosts

Figure 2 Places and Hosts shows the relationships between Mobile Objects (i.e.
Clusters), Agents and Places. A Place is a logical execution environment for objects.
Located objects reside at one Place. A Mobile Object can change its residence from
one Place to another (Figure 2). A Place resides at a host for its lifetime. It is useful to
consider a Place to be a distinguished object created within a host process (e.g. a
virtual machine process which is part of a FollowMe system). The lifetime of the Place
would then be the lifetime of the process. Places do not move between hosts; however
hosts may be mobile, and a Place on a host which moves has support for dynamic
change of the host’s address.

9

5.3. Implementation of Clusters

Place

Mobile
Object

{references to
 interfaces}

Object

Creates in same
cluster

n Cluster

other cluster
management

classes

Contains
Containsmanages

lifecycle of
contents

moves
between

1
1 n

'Normal' Method
Invocation

{same cluster}
Flexinet RMI

{different cluster}

Figure 3 Objects, Clusters and Mobile Objects

Figure 3 Objects, Clusters and Mobile Objects shows the relationship between (Java)
objects, Clusters and Mobile Objects. A Cluster is a Java object containing a grouping
of objects which are managed together. A Mobile Object is a specialisation of this
which is able to move between Places. Protection, movement, destruction, charging
and other management functions are considered in terms of the lifecycle of Clusters
and the interaction between them.
It is sometimes useful to consider a Cluster and its contents as a virtual process, and
the encapsulation and security concerns around Clusters encourage this abstraction.
An object is the basic building block out of which applications or agents may be built.
Objects may contain references to interfaces on other objects anywhere in a FollowMe
system. Objects may directly create other objects, but only within the same Cluster.
They may be able to arrange the creation of objects in other Clusters via
communication with a place. Within a Cluster, access to methods/data on objects is
determined by standard language protection means and takes place using standard
method invocation. Between Clusters, encapsulation is enforced so that object in one
Cluster may only access methods on objects in other Clusters if these methods form
part of the interface passed between the clusters. The method invocation semantics
are those of FlexiNet RPC (see Section 5.4 - Communications and Encapsulation).

5.4. Communications and Encapsulation
The process by which we provide location-transparency for intra-Cluster
communications revolves around three points: Cluster encapsulation; dynamic stub
generation; and the infra-structure level name directory, which provides location-
transparent naming. The encapsulation and stub generation are discussed in this
section, and the naming service in Section 5.5, Location-transparent naming service.
Communications are all by FlexiNet RPC, and all communications between Clusters
are handled by a FlexiNet communications stack. The Place on which a Cluster is
created provides a reference to a default trading service, and the Place may also
provide references to itself and/or interfaces on other Clusters. These references are
bound to the FlexiNet communications stack for the Cluster. Via these interfaces or
the trading service, the Clusters can gain references to interfaces on other Clusters.
These interfaces will also be bound to the Cluster’s communications stack.

10

When a Cluster wishes to make a method call on a remote interface (e.g. the trading
service), the communications stack examines the Java class to which the interface
belongs, using introspection provided by Java core reflection, and dynamically creates
a stub out of Java bytecode. This stub, when invoked, marshals the method call
according to the FlexiNet RPC protocol and passes it to the communications stack to
fulfil the method invocation on the interface on the remote Cluster. If any such call
passes an interface as an argument or result, the stub binds the interface reference to
the relevant communications stack, so that if the reference is invoked, a stub can be
created to manage the remote communications.

5.5. Location-transparent naming service
That the communications stack is able to find the Cluster on which the call should be
made is due to the location-transparent directory-based naming service. There are
four key points to our naming service:
i) we control what entities are able to update the directories - only Places from which

a Mobile Object is moving may update the record for the Mobile Object. This is
possible as Cluster names (transparently to the applications programmer) contain
information about their current network host. This prevents fraudulent changing
of naming records by “spoof” Clusters.

ii) we provide a hierarchy of directories, for scale and robustness. This means that a
naming service may decide to copy the naming record for a Mobile Object (or
Cluster) up the hierarchy to increase its stability.

iii) redirection: we allow naming records to be moved between directories so that an
optimal directory location can be chosen for the record (e.g. following the
movement of Clusters around the network).

iv) we allow caching for performance. A naming record can be kept at a previous host,
as well as being passed up the hierarchy, to reduce look-up time.

One possible scenario for using the naming service is shown in Figure 4, Figure 5 and
Figure 6. In Figure 4, a naming hierarchy is shown, with Places (large, light-coloured
boxes), naming services (smaller, dark boxes), a naming record (a heart-shape) and a
Mobile Object (a circular object). In this figure, the Mobile Object moves from its
original Place to another.

Figure 4 - Naming service: Mobile Object moves

In Figure 5, the naming record for the Mobile Object is moved to another naming
service. In this case, the naming service is a parent to the naming service at the Place
to which the Mobile Object has moved. This might be because the Mobile Object is
expected to move between a number of branches in this hierarchy, rather than staying
at the new Place. A link is provided at the naming service of the old Place, to allow

11

the Mobile Object to continue to be found by other objects with references to its
original directory. It should be noted that the link is not, however, to the Object
itself, but to the directory. This means that we do not rely on tomb-stoning from each
Place, but point instead to naming services which themselves provide pointers.

Figure 5 - Naming service updated

In Figure 6, the link from the original Place’s naming service is copied from itself to
its (well-known) parent. This means that in the event of failure or of garbage-
collection by the original directory, the Mobile Object can still be found by the
infrastructure by searching back up the tree, but means that while the link still
remains, it is cached and may provide a performance improvement on traversing the
naming service hierarchy.

Figure 6 - Naming service - caching and copying

5.6. Mobile Object Workbench API
The constructor for a MobileObject is for use by the infrastructure, and any instance-
specific initiation should be done within an “init” method. The “restart” method is
called on completion of a move to a Place. The Tagged type represents a most general
interface reference type (whereas the Java Object type represents the most general
object or interface reference type).

 public class MobileObject extends Cluster
 {
 void pendMove(Place dest) throws MoveFailedException;

12

 void syncMove(Place dest) throws MoveFailedException;
 Object copy(Place dest) throws MoveFailedException;
 Object init(...) throws InstantiationException;
 abstract void restart(Exception reason);
 }

 public interface Place
 {
 public Tagged newCluster(Class cls,Object[] init_args)
 throws InstantiationException;
 public Object getProperty(String propertyname);
 }

6. Status
The FollowMe project, and the design of the MOW, started in October 1997. We now
have a fully functioning mobile object system written using 100% pure Java. Currently
we are concentrating our efforts in this direction, and have prototype secure SSL
communications[14] and a design to support integrity and confidentiality of mobile
data and code.
Other ongoing work includes support for class evolution, again leveraging the cluster
abstraction to allow different mobile objects to use different version of classes,
despite being located in the same host.
The MOW has been released to project members and the ANSA consortium[17] and
various demonstration applications have been written.

7. Summary
The Mobile Object Workbench has shown how to add mobility to an existing object
language. The key principle has been strong encapsulation of both state and threads,
which has meant that the addition of mobility has not been too difficult. With our
simple computational model of passing all interfaces by reference and all objects by
copy, we have provided transparency of remote communications, and by providing a
robust directory-based location service, we have ensured location-transparency for
communications as well.
The two other important principles of the system are the integration of security into
the design framework from the outset, and local dynamic stub generation for
interfaces. This has provided us with great flexibility for binding policies and allowed
security to be explicitly or implicitly leveraged by the infrastructure and applications
using it.

1 “MA ‘97” First International Workshop on Mobile Agents 97, Berlin, Germany, April
7 - 8, 1997. http://www.informatik.uni-stuttgart.de/ipvr/vs/ws/ma97/ma97.html
2 “Agent Product and Research Activities” The Agent Society.
http://www.agent.org/pub/activity.html
3 Danny B. Lange and Daniel T. Chang. IBM Aglets Workbench - Programming
Mobile Agents in Java, A White Paper (Draft)” IBM Corp.. Sept. 1996.
http://www.trl.ibm.co.jp/aglets/
4 “CORBA/IIOP 2.1 Specification” Object Management Group. Aug. 1997.
http://www.omg.org/corba/corbiiop.htm

13

5 Nat Brown, Charlie Kindel. “Distributed Component Object Model Protocol --
DCOM/1.0 - Network Working Group INTERNET-DRAFT”, Microsoft Corporation,
Jan. 1998. http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-02.txt
6 “Open Distributed Processing - Reference Model”, International Standards
Organisation, Sep. 1995. http://www.iso.ch:8000/RM-ODP/
7 Dan S. Wallach, Dirk Balfanz, Drew Dean, Edward W. Felten. “Extensible Security
Architectures for Java”, in Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles 31,5, Dec. 1997, pp. 116-128.
8 “Agent Technology” Odyssey, General Magic, Inc.. http://www.genmagic.com/agents/
9 “Java Naming and Directory Service (JNDI)”, Sun Microsystems.
http://www.javasoft.com/products/jndi/index.html
10 “The JDBC database access API”, Sun Microsystems.
http://www.javasoft.com/products/jdbc/
11 “ObjectSpace Voyager Core Technology”, ObjectSpace.
http://www.objectspace.com/Voyager/
12 “Mobile Agent Facility (Draft)” Crystaliz, GMD FOKUS, General Magic, IBM, The
Open Group. http://www.genmagic.com/agents/MAF/
13 Marlena Erdos, Bret Hartman, Marianne Mueller. “Security Reference Model for
the Java Developer's Kit 1.0.2”, Sun Microsystems. Nov. 1996.
http://java.sun.com/security/SRM.html
14 “The SSL Protocol”, Netscape Inc. http://home.netscape.com/newsr ef/std/SSL.html
15 “FollowMe project overview”, FAST e.V.
http://hyperwav.fast.de/generalprojectinformation
16 “FlexiNet - Automating application deployment and evolution”, APM Ltd.
http://www.ansa.co.uk/Research/Flexinet.htm
17 “The ANSA consortium”, APM Ltd. http://www.ansa.co.uk/Research/

