
Full Technical Paper submission to
 Middleware ’98

Mobile Java Objects
Richard Hayton, Mike Bursell, Douglas Donaldson, Andrew Herbert.

APM Ltd.

Abstract

In this paper we discuss the engineering requirements for adding object mobility to the Java
programming language, and give an overview of the design and implementation of our mobile
object system. We note that it is helpful to cluster objects for mobility, and that if these clusters
represent untrusted pieces of code (for example Agents) then they must be encapsulated both to
control their access and to control access to them. We note that managing large numbers of mobile
objects in an open environment is a difficult problem, but has its roots in the management of large
distributed name spaces. We propose an architecture for re-locating moved objects that is both
scaleable and tuneable.

The mobile object system we describe has been implemented, and is currently in use as part of an
ESPRIT agent project. We are currently evolving the design and implementation to provide
additional security and distribution facilities.

Contact Information
Richard Hayton

APM Ltd
Poseidon House

Castle Park
Cambridge
CB3 0RD

United Kingdom

Tel: +44 1223 568921
Fax: +44 1223 359779

Email: Richard.Hayton@ansa.co.uk

Mobile Java Objects
Richard Hayton, Mike Bursell, Douglas Donaldson, Andrew Herbert.

APM Ltd.

Abstract

In this paper we discuss the engineering requirements for adding object mobility to the Java
programming language, and give an overview of the design and implementation of our mobile
object system. We note that it is helpful to cluster objects for mobility, and that if these clusters
represent untrusted pieces of code (for example Agents) then they must be encapsulated both to
control their access and to control access to them. We note that managing large numbers of mobile
objects in an open environment is a difficult problem, but has its roots in the management of large
distributed name spaces. We propose an architecture for re-locating moved objects that is both
scaleable and tuneable.

The mobile object system we describe has been implemented, and is currently in use as part of an
ESPRIT agent project. We are currently evolving the design and implementation to provide
additional security and distribution facilities.

1. Introduction
Java is an ideal language for developing distributed applications. It provides both
object and interface abstractions, which gives a useful distinction between an object’s
interface and implementation. It also provides language level introspection, and
allows for dynamic code creation. These features make it particularly suited to the
design of middleware systems. Current Java middleware offerings have largely
ignored these language level features. Sun’s RMI[1] supports remote invocation, but
allows only one interface per object, and insists that objects are constructed from
base-classes to indicate if they are passed by reference or value. This restricts
distributed programs to being written using a specialised sub-set of Java, which is
both unnecessary, and an added complication when distributing existing code. RMI
does not make use of Java’s powerful type introspection, but instead relies heavily on
native methods. This increases the burden on a JVM implementer and gives a system
which is hard to evolve.

The other Java middleware offerings are CORBA compatible ORBs[2,3,4]. These use
CORBA notions of object and interface, rather than the native Java ones. From the
point of view of Java programmers, CORBA IDL offers a very restricted subset of the
facilities offered by native Java interfaces. Again, these products rely on specialist
stub-compilers or other tools, rather than leveraging type-introspection. This
increases the complexity of distributed programming, and the amount of additional
knowledge that a programmer must have.

In the area of code mobility, most offerings have concentrated on either agents, which
tend to discard Java’s strong interface typing in favour of simple messages, or applets,
which provide class, but not object, mobility. One exception to this is Voyager[5],
which provides simple object mobility by post-processing Java classes.

With the design of our middleware platform, FlexiNet, we took the approach of
extending Java language concepts by adding selectively transparent remote invocation
to calls on any interface. We used Java’s strong typing support and runtime
introspection to allow us to build a strongly typed reflexive binding framework. We
further used Java’s support for runtime code loading to allow us to create stubs
transparently on the fly during program execution. This gives a middleware system
which is both extremely flexible and a natural extension of Java’s features[6].

When we turned our attention to mobility, we took the view that this too should be a
natural extension of the Java language. We required a system in which we maintained
the FlexiNet view of a “sea of objects” but which allowed objects to move between
hosts. This movement should be transparent to clients of the objects, who simply
continue to use Java references to exported interfaces.

This approach has several advantages. As well as providing a straightforward, and
familiar, programming paradigm, we remain within the well-understood domain of
distributed systems. This allows us to leverage existing research when tackling issues
of scalability, robustness and security.

In the following section we give a brief overview of the FlexiNet middleware platform
that was used to create our Mobile Object Workbench. In Section 3 we outline the
requirements of mobile objects. Section 4 briefly considers mobile agent requirements,
as they are an obvious application of mobile objects. Section 5 outlines the Mobile
Object Workbench itself and expands on the implementation choices. Section 6
discusses the issues related to rebinding to a moved object. Section 7 gives the
current implementation status, and Section 8 concludes.

2. FlexiNet
The FlexiNet Platform is a Java middleware system built as part of a larger project to
address some of the issues of configurable middleware and application deployment.
Its key feature is a component based ‘white-box’ approach with strong emphasis
placed on reflection and introspection. This allows programmers to tailor the
platform for a particular application domain or deployment scenario.

The FlexiNet engineering model has three central concepts. Interfaces are
represented by proxies. Proxies enforce the typing of the remote interface, and
perform remote access by utilising binders. Each binder is an object capable of
creating a generic binding to a local or remote object, and different binders embody
different application requirements or engineering strategies. Binders may make use
of other binders in a recursive way. This keeps individual binders small, and allows
application domain-specific binders to be easily created. To manage the flexibility,
FlexiNet supports the notion of multiple name spaces for interfaces, and names are
both strongly typed and structured. Names may be constructed out of other names, or
arbitrary data, making the management of aggregate and indirected names
straightforward.

2.1. Multiple Binders
The FlexiNet model of multiple recursive binders, allows different reflective
abstractions to be embodied. For example, we may have binders that create bindings
that enforce transparent persistence, or that provide transactional access to objects,

or that bind to remote objects using standard protocols such as IIOP. Binders
performing all of these functions are currently being developed as part of continuing
FlexiNet work. As binders may call other binders recursively, we may also create
binders to perform additional functions that are orthogonal to the actual
communication, by recursively calling other binders. For example we have a recursive
binder that chooses between a number of other binders, and one that performs access
checks prior to binding.

2.2. Generic Communications
This is a reflexive technique central to the design of FlexiNet. Rather than using
stubs to convert an invocation directly into a byte array representation, instead we
leverage Java’s runtime typing support to represent the invocation in a generic (but
fully typed) form. The layers of the FlexiNet communication stack may then be viewed
as reflexive meta-objects that manipulate the invocation before it is ultimately
invoked on the destination object using Java core reflection.

This approach allows middleware (or application) components to examine and modify
the parameters to the invocation using the full Java language typing support. Figure 1
illustrates how a communication stack can be considered as a number of meta-objects
that perform reflective transformations on an invocation. Third part meta-objects can
be fully general and are fully type-safe. For example a replication meta-object might
extract replica names from an interface and then perform invocations on each replica
in turn. As this processing is performed in terms of generic invocations, the is no need
for each of these calls to pass through stubs and so the code can be both
straightforward and efficient.

Wire CommunicationsWire Communications

STUB

Client Side
Meta Objects

Destination
Object

Reflective
Protocol Layers

Reflective
Protocol Layers

Generic Invocation Layer

Server Side
Meta Objects

Reflective
Protocol Layers

Reflective
Protocol Layers

A

A

G

M

M

T

M M

M

M

T

M

Typed Communication

Generic Communication

Untyped Communication

Application Code

Auto-Generated Code

Middlware Code

Third Party Code

A
G
M
T

Figure 1 A Reflective FlexiNet Communication Stack

When designing the Mobile Object Workbench, we decided to implement it as a set of
FlexiNet binding protocols and services. In particular the mechanism for
communication with a mobile object is essentially communication with a static object
together with mechanisms for rediscovering the object’s location after it has moved.

3. Requirements for Mobile Objects
In this section we outline the requirements for mobile objects over and above the
requirements of distributed objects.

3.1. Unbinding
The key feature of a mobile object is that it must be able to move. When we move an
object, we effectively copy it to a new location, and then arrange that all references to
the old object are replaced with references to the new object. In distributed system
terms, this requires a mechanisms for unbinding a previous binding to an object. If
objects are referenced directly using language level pointers, then this would not be
possible without changing the implementation of the Java virtual machine, which
would reduce the advantages of Java as a portable language. Instead we arrange that
mobile objects (or more correctly interfaces on mobile objects) are referred to
indirectly, using FlexiNet stubs. This level of indirectly allows us to re-plumb
references dynamically when objects move. In addition, to avoid the need to track
distributed references, we only perform this re-plumbing when a reference to a
moved object is first de-referenced. The use of stubs and the re-plumbing is
transparent to the application programmer, although they may reflect this process,
for example to deal with errors, or if there is a requirement only to communicate with
an object when it is in a certain location.

3.2. Consistency and Threads
At any point in time, an object may be active or passive. An active object is one that
has a thread of control currently executing in it, or passing through it. A passive
object is one that is not currently being executed, and hence has no threads active in
it. When we move an object we must ensure that the move is atomic. To do this all
processing of the object is halted until the move is complete. One approach to this
would be to pause any threads running in an object, move the object, and then restart
the object and the thread at the new location. Whilst this would seem an ideal
solution, it is impractical, as Java does not allow us to determining the complete state
of an active thread at an arbitrary point of execution. A more practical approach (and
the one chosen) is to encapsulate the object and enforce a locking strategy which
ensures that no threads are executing the object at the point of movement. This does
not prevent the existence of active mobile objects, or those that contain completely
internal threads, but it does require a degree of co-operation with such objects, so
that they can be ‘shut down’ prior to movement, and then ‘restarted’ at the new
location.

The encapsulation mechanism is integrated with the mechanism for transparent re-
binding, so that external threads that have blocked pending an object’s movement
restart and relocate the newly moved object.

3.3. Grouping
In the discussion so far, we have been describing the migration of single Java objects.
However there is little utility in moving a single Java object. A more useful unit for
mobility is a set of related objects, and we need a mechanism for deciding which
parts of a program should move together.

We introduce the notion of a cluster as both a grouping and encapsulating construct to
address this issue. A cluster is an encapsulated set of objects in the sense that
references that pass across a cluster boundary are treated differently from those
entirely internal or external to it. In particular, when resolving an external reference,
the system may have to locate a cluster on a remote machine (possibly after it has
moved). References entirely within a cluster can be ordinary Java references, as no
special action needs to be taken when they are de-referenced.

To a programmer, clusters are a surprisingly straightforward concept. A special
mechanism is used to created the initial object populating a cluster, and after this any
new object is created in the same cluster as its creator. For the most part clusters are
completely transparent to the programmer.

3.4. Failure Modes
When designing distributed systems, there is always the possibility of host or
network failure. In particular network partition can result in hosts incorrectly
assuming that other hosts have failed. When designing a mobile object system, a key
decision is the semantics in the worst case scenario of a network partition during
object migration. There are three possibilities. We could allow the possibility of the
object existing on both sides of the partition - this was rejected as it introduces an
unwanted degree of complexity. The second possibility is to ensure that an object is
destroyed if it cannot be uniquely determined which side of a partition it exists in.
This is the default semantics chosen in the Mobile Object Workbench. The third
possibility is to suspend use of the object until the network is restored. This is being
considered in the context of the integration of transactional mechanisms into
FlexiNet. Section 5.4 gives a fuller description of the state transitions required to
ensure consistent movement.

3.5. Scalability
There are two issues relating to the scalablity of a mobile object system. Firstly, some
design choices would require the registration either of all objects, or worse, of all
references to all objects. We rejected these approaches as we wish to use the mobile
object workbench in an Internet environment, which is both open and has no central
administration. The second issue relates to the rebinding to interfaces on an object
once it has moved. We would like this to be possible, even if the original host has
since failed. This issue is discussed in detail in section 6.

4. Requirements for Mobile Agents
The mobile object workbench is not a mobile agent system, however it was developed
as part of an ESPRIT agent project called FollowMe[7], and one of the other partners
is developing an agent system on top of it. As mobile agents are an obvious application
of mobile objects, it is worthwhile to consider their specific requirements.

4.1. Autonomy
Mobile agents are generally considered to be ‘autonomous’. That is to say that it is the
agent itself that determines the actions it takes, and in particular controls its
movement. In terms of mobile objects and clusters, this gives a requirement for
cluster mobility to be initiated only from the cluster itself. The encapsulation
mechanism gives provision for this; only threads within a cluster have access to the

objects within it, and by giving one of these objects a handle to the infrastructure
which controls mobility, this is effectively hidden from the outside world. There are
two exceptions to this. Firstly, a malicious implementation of the infrastructure can
overcome the FlexiNet encapsulation mechanisms; this is a necessary evil of
distributed computing - you have to trust the host. The second exception is that a host
may ‘legally’ destroy an object and reclaim the resources it is using. This is necessary
to allow hosts to be manage their own resources. The ‘normal’ procedure is for a host
to inform a cluster that destruction is imminent, in order to allow it to move or shut
down cleanly, but a host must always be able to perform a ‘dirty shutdown’ in order to
protect it from malicious or erroneous agents.

4.2. Security
“Security” is a catch-all term used to describe a variety of issues, not all always well
differentiated. Some autonomous mobile agent systems can be seen as lacking in
their approach to some of these issues, and we have found that the approach of
designing and engineering from the point of view of a mobile object system, allowed
us build on established security principles.

We identify six basic areas of security concern within the Mobile Object Workbench:

1. host integrity - protecting the integrity of a hosting machine and data it contains
from possible malicious acts by visiting objects.

2. cluster integrity - it should be possible to determine if a cluster has been tampered
with, either in transit or by a host at which it was previously located. We may wish
to allow hosts to modify parts of a cluster (e.g. data) but not others (e.g. code).

3. cluster confidentiality - a cluster may wish to carry with it information that should
not be readable by other clusters, or by (some) of the hosts which it visits.

4. cluster authority - a cluster should be able to carry authority with it, for example a
user’s privileges, or credit card details. To provide this we need both cluster
integrity and cluster confidentiality.

5. access control - hosts should be able to impose different access privileges on
different clusters that move to it. Clusters and hosts should also be able to enforce
access control on exported methods.

6. secure communications - clusters and hosts should be able to communicate using
confidential and/or authenticated communication. Some applications may also
require other security features, such as non-repudiation.

We believe that unless all of these aspects of security are addressed, any mobile
object system will not prove secure enough for real world applications, and we have
therefore adopted the principle of including security issues from the outset, rather
than as an “add-on”, bolted on at a later date. Section 5.6 discusses our approach to
these issues.

4.3. Thread Encapsulation
As cluster representing agents represent potentially distrusting pieces of code, it is
important that one cluster cannot adversely affect another. In particular one cluster
must not be able to invoke a method on a second cluster, and then destroy the thread
performing the call, so as to leave the second cluster in an inconsistent state. Equally,
if a cluster crashes or intentionally blocks whilst servicing a request, the client must
be able to recover, and must not also fail or block indefinitely. In order to achieve this
degree of strong encapsulation, we de-couple all threads that enter or leave a cluster,
so that the failure of the caller and callee are independent. Again, this thread de-
coupling is integrated with the binding system and is transparent to the application
programmer.

5. The Mobile Object Workbench
The Mobile Object Workbench is being built within the context of the FollowMe
European ESPRIT project (no. 25,338), which commenced in October 1997[7].The
Mobile Object Workbench is being constructed as an extension of a Java middleware
platform called FlexiNet, which was developed at APM during the last eleven
months[8].

5.1. Concepts
Figure 2 shows the relationship between (Java) objects, Clusters and Mobile Objects.
A Cluster is a Java object containing a grouping of objects which are managed
together. A Mobile Object is a specialisation of this which is able to move between
Places. Places are themselves objects which abstract execution environments,
typically with one Place per JVM. Protection, movement, destruction, charging and
other management functions are considered in terms of the lifecycle of Clusters and
the interaction between them. It is sometimes useful to consider a Cluster and its
contents as a virtual process, and the encapsulation and security concerns around
Clusters encourage this abstraction.

Place

Mobile
Object

{references to
 interfaces}

Object

Creates in same
cluster

n Cluster

other cluster
management

classes

Contains
Containsmanages

lifecycle of
contents

moves
between

1
1 n

'Normal' Method
Invocation

{same cluster}
Flexinet RMI

{different cluster}

Figure 2 Objects, Clusters and Mobile Objects

An object is the basic building block out of which applications may be built. Objects
may contain references to interfaces on other objects anywhere in the system. Objects

may directly create other objects, but only within the same Cluster. They may be able
to arrange the creation of objects in other Clusters via communication with a place.
Within a Cluster, access to methods/data on objects is determined by standard Java
language protection means and takes place using standard Java method invocation.
Between Clusters, encapsulation is enforced so that object in one Cluster may only
access methods on objects in other Clusters if these methods form part of the
interface passed between the clusters.

5.2. API
For completeness, the Mobile Object Workbench API is included. The key point of
note is that the API is entirely concerned with the lifecycle of clusters -
communication takes place using application-level exported interfaces, and
transparent remote invocation.

5.2.1. Class UK.co.ansa.flexinet.mobility.Cluster

public synchronized void lock()
Increase the number of locks held on the object. Whilst a lock is held, new calls made
on objects in this cluster from other clusters will block. Calls which have already
passed a certain point will continue to be executed.

public synchronized void unlock() throws UnMatchedLockException
Decrease the number of locks held. If the number of locks held is zero, wake any
blocking calls.

public void init()
Called upon object instantiation. A subclass that requires initialisation arguments, or
wishes to return an interface to its creator, should provide an alternative init(...)
method. The init method may take any arguments, and the appropriate init method
will be chosen by matching the creator’s arguments. The init method may return an
interface on any object in this cluster

public void stop()
A call made by the place if it wishes the cluster to cease processing. The cluster is
expected to clean up and then return. When the call returns, the place will invoke
destroy().

public final void destroy()
This call destroys the cluster as effectively as possible.

public void restart(Exception e)
Called after the cluster is restarted. A subclass which wishes to take action after a
restart should override this method.

5.2.2. Public Class UK.co.ansa.flexinet.mobility.MobileObject extends Cluster
Mobile objects are clusters that have the ability to move between places

public synchronized void pendMove(Place dest) throws
MoveFailedException
Request a move to the identified place. A new thread will be spawned to perform the
move. The move will not take place until there are no other threads within the
cluster.

public void syncMove(Place dest) throws MoveFailedException
Request a move to the identified place. The current thread will attempt to perform
the move. If successful it will exit. The move will not take place until there are no
other threads within the cluster.

5.2.3. public interface UK.co.ansa.flexinet.mobility.Place
The interface representing a place at which a cluster resides, and between which
mobile objects move.

public Tagged newCluster(Class cls) throws InstantiationException
Create a new cluster at this place. Once created, init(arg0,arg1,...) will be called on
the new object. The init method may return an interface, which is passed to the
creator.

5.3. Binding architecture
Communication between clusters takes place by remote method invocation using a
special binding protocol. This is a ‘standard’ FlexiNet binder, together with two
special reflexive layers. On the client side of an invocation is a “cluster location”
layer. This examines the internal name used to represent the interface being
accessed, and determines the host on which it resides. The procedure adopted is to
try the last known location, and only contact the relocation service upon failure.

On the server side of the communication, there is a reflexive “encapsulation layer”.
This processes incoming calls, checks that they refer to clusters that are (still) located
on the host, and performs the synchronisation required to ensure that the cluster is
not in the process of moving. Part of the encapsulation process is to de-couple the
calling thread, so that client and sever clusters cannot affect each other by killing or
otherwise manipulating the thread. This is illustrated in Figure 3.

Cluster
Location
Lookup

Interface
Multiplexing

+
Cluster Locking

STUB

FlexiNet Communications Framework

1. Invocation

2. Assume no
movement

3. RMI via
FlexiNet

4. Perform
Invocation

Figure 3 Implementation of inter-cluster calls

5.4. Orchestrating Mobility
Figure 4 illustrates the states that an instance of a mobile object may be in. The object
is initially created in state A1. This state represents an active object that has one
thread in it (the thread that calls the constructor). When active, the object may create
other threads, and methods on its interface may be invoked by objects in other
clusters. It will therefore move between active states.

In order to move, a mobile object invokes a pendMove or syncMove call. Both of these
request a move ‘as soon as possible’, the different being whether the calling thread
returns immediately (pendMove) or blocks and never returns (syncMove). When a move
call is invoked, the object enters a pending state. These are identical to active states
except that the object will be moved as soon as all executing threads exit (i.e. when it
enters state P0). As a side effect of executing a pendMove or syncMove, the cluster
becomes locked. When locked, calls from other clusters block until the cluster is
unlocked. A cluster may lock itself any number of times, and an equal number of
unlocks are required before it may be accessed by other clusters. Locking a cluster
does not prevent it from calling other clusters. When in a pending state, a cluster is
not able to remove the final lock.

When a mobile object enters the state P0 it will undergo a series of transitions that
may result in the creation of a new mobile object at a different place. The original
mobile object will then be discarded (it enters state X). If an error occurs during this
process and it can be safely inferred that the new object has not been created, then
this object is returned to state A1. If the move was initialised by a call to syncMove,
then the error status is returned as an exception. If the move was initiated by a call
to pendMove, the object is restarted by calling the restart method, and the exception is
passed as a parameter.

The newly moved object is an exact replica of the original, and in addition all
references to interfaces exported by the original cluster are re-mapped to the new
(effectively the original object has moved). It is started in state A1 by a call to restart.
The new object (or original after failure) will have the same lock status as the original
- apart from the lock automatically taken when pendMove or syncMove was called, which
is released. If an object wishes to restart in a locked state, then it may obtain an
additional lock prior to calling pendMove or syncMove. This allows newly moved objects
to perform start-up cleanly, before allowing external access.

Copying, rather than moving, an object follows exactly the same procedure as
syncMove. The copy operation blocks until there are no other threads and the new
object has been created, or a failure is detected. After successful synchronisation, or
failure, the original object enters state A1 and the copy operation terminates. The
newly created copy of the object commences operation with a call to restart in state
A1.

Nack

X

C Create after Move

SN

Po
ss

ib
le

 S
uc

ce
ss

Definite Failure

 Recieve Sync

Copy to new Loc

Update Namer

Sy
nc

lock=0

P1 P0P2P3

C
re

at
e

Err

return exception (syncMove)

or call restart(pendMove)

pendM
ove

syncM
ove

TC

TE,RTE,RTE,R

TC

A1 A0A2A3
TE,R

TE,RTE,R

TC,C TC,C
C

TC
TE
C

R

Thread Create
Thread Exi t
Call Start
 (block until lock=0)
Call Return
T imeou t

Remote cal l

Increase Lock count

Decrease Lock count

Key

A0.. .An
P0. . .Pn

C
N
S
X

Active (n threads)
Pending (n threads)
Create af ter move
Call Namer
Synchronize
Dead

pendM
ove

syncM
ove

pendM
ove

syncM
ove

Figure 4 State transitions of a mobile object instance

5.5. Method Invocation
When an object in one cluster attempts to invoke a method on an object in another
cluster, this must block if the callee cluster is in the process of moving. Equally it
must not be possible for a caller to prevent a callee from moving, by bombarding it
with requests. The following state diagram indicates the process through which a
callee must go in order to meet the requirements, and in order to locate the current
instance of a mobile object. This process is undergone automatically in the Mobile
Object Workbench infrastructure. It should be noted that the callee is able to
interrupt a thread making a call, but that this will not affect the caller. This is
important to prevent the caller from blocking the callee’s progress.

 Client cluster Callee cluster instance

Locate (strength i)OV Call Method
i=0

Await Lock=0

E

R

Call
Method

T+Increase Thread
Count

I

C
re

at
e

T- W

L
Validate not in

state X

J

Decrease ThreadCount

SSpawn Remote Thread

 Fail:
Signal Instance Failure

Success,
Failure

Timeout or
Interrupt

Return method results

Instance
Failure

i++

Remote call

Increase Lock count

Decrease Lock count

Key

I
L
S
W
O
V
T+
R
E
T-
J

Initial
Locate
Spawn
Wait
Obtain Lock
Validate Instance
Thread Plus
Rlease Lock
Execute
Thread Minus
Join

Figure 5 State transitions for an invocation on a remote cluster

5.6. Security
Within a distributed, mobile object context, issues of trust take on a different slant to
non-mobile systems. In both mobile and non-mobile systems, questions of how much
trust is placed in an object must be based on the provenance of that object - where it
has come from, and its history. In a non-mobile object oriented system, such as the
base Java implementation, objects are typically instantiated from class files, having
no other state. In Java, these classes may be signed, and a JVM may assign policies to
their instantiations based on this signing. In a mobile object context, this mechanism
is not flexible enough, as the history of the object has not started at this JVM, and the
initial signing of the class files does not reflect the full provenance of the object.

For this reason, we have designed and implemented a Security Manager[9] which
extends Java’s model by allowing policies to be assigned to instances of objects, rather
than just their class. This has been possible because of the strong thread
encapsulation we have employed within the Mobile Object Workbench, which gives
each cluster its own thread group. As Java allows checking of the thread performing
a particular operation, we may determine the cluster from which an invocation
originated, and hence enforce the appropriate policies.

This security policy allows hosts to restrict operations allowed by particular clusters,
thereby protecting their own integrity. It also provides a good base from which to
extend cluster-to-cluster access restrictions.

Cluster integrity and confidentially are enforced by encrypting and/or signing certain
objects within a cluster. This prevents a host without sufficient access privileges from
examining a cluster’s state, and allows one host to detect if a cluster has been
modified by a host that it visited earlier. In addition to this, we must ensure that
cluster are not dissected - or a malicious host could ‘steal’ parts of the cluster that
represented encrypted passwords and use them to build its own clusters. To do this,
we require a mechanism for specifying, and validating, integrity statements. For
example we may annotate a cluster’s definition to indicate that a particular field may
only be modified by certain hosts. We may then use digital signature techniques to
ensure that whenever the field is modified it obtains a signature from the current
host, and when other hosts attempt to read this field we can throw an exception if the
signature is incorrect.

We are currently developing a system to allow integrity policy statements to be
specified. Once specified, the use of secure fields or objects can be made ‘almost’
transparent to the programmer. All that is required is that they use accessor
functions to access the protected fields.

Cluster authority can be implemented using cluster integrity and confidentiality.
Together these allow a cluster to carry with it a password or other secret information,
without the concern that this secret can be read at any host which is visited. Clearly,
once the secret is revealed to a host, there is nothing that can be done to prevent the
host from misusing it. For this reason we have a model that the mobile object moves
into a secure environment before revealing a secret. Figure 6 gives an example; a
cluster may move between several hosts before eventually arriving at a ‘Bank’ host. At
this host, it may reveal a password to allow it access to a bank account. However, as
the Bank host already knew the password, revealing it has not given the bank any
additional privileges, and the security of the password has not been weakened.

BANK
Bank

Account

1. Cluster with secret
information

2. Secret is sealed with
Bank's public key.

3. Intermediate host
cannot read secret.

4. Bank may read
secret and allow Cluster
access to account.

Figure 6 Clusters with Secrets

Access control and secure communications may be implemented using standard
techniques. We use FlexiNet’s reflective binding system to allow a cluster to receive
notification of an invocation immediately prior to it’s execution, so that it may
implement its own security policy, and throw an access control exception if
appropriate. Secure communication between places may takes place using a FlexiNet
binder that support SSL[10]. Secure communication between mobile clusters may also
take place using SSL, but requires that clusters reveal the information use to prove
their identity to the host from which they are communicating. This is reasonable in
some circumstances, but should be used with caution.

6. Relocating Moved Objects
There are several approaches to managing migration, the most common of which is
called the ‘Tombstone’ approach. In this approach, when a cluster moves, it leaves
behind a forwarding address, so that future calls can be redirected. When a cluster is
located by a particular client, that client (optionally) remembers the cluster’s latest
location, to speed future lookups. This simple scheme is used by the majority of
existing mobile object (and agent) systems. Although it has some deficiencies, it can be
used as a standard to measure other approaches against. We note a number of
important parameters when assessing a scheme for managing mobile names.

• Move cost. The additional overhead that must be performed whenever a cluster
moves. In the tombstone approach, this is low as no additional hosts need to be
contacted.

• Call cost. The additional overhead per call. In the tombstone approach, this may
be small (if the cluster has not moved), but is unbounded. If the cluster has moved
many times, there will be a cost associated with each forwarding call.

• Dependence on hosts. The number and type of hosts that must remain active and
reachable in order for a call to succeed. The tombstone approach scores badly here.
Each of the hosts at which the cluster has previously resided have to remain active
and connectable. These hosts must never fail if it is to be guaranteed that the
cluster can be contacted by all clients who have references.

• Background load. The amount of processing that must be done by a host in order
to keep references ‘live’. The tombstone approach has no background load, but a
frequent extension of it is to refresh all references periodically in order to keep the
hop count low, and in order to reduce the reliance on hosts from which a cluster
has moved.

• Garbage accumulation. The amount of information that a host must keep about
clusters that do not reside on the host, and are not referenced by objects at the
host. In the tombstone approach, each host must remember forwarding information
indefinitely. In extensions of this scheme, this may be traded off against increased
background processing.

• Security implications. The effect the scheme has on ordinary access control or
authentication. Security requirements tend to limit the use of schemes such as
Tombstoning to messages used to locate a cluster. Once the cluster is located, a
normal call is made directly from client to server. I.e. normal messages are not
forwarded, only ‘locate’ requests.

• Integrity Requirements. The effect that a malicious or erroneous host can have
on the smooth running of the system. This effect may be to prevent execution or to
increase any of the costs or dependencies listed above. In addition any adverse
affect may be limited to objects created at, or once located at, a malicious host, or it
may not. In the Tombstone approach, a malicious host cannot affect the location of
objects other than those which were once located at it. However, in variants on
Tombstoning, that rely on honest accounting of remote references to perform
background Tombstone pruning, a malicious host can play havoc.

The Mobile Object Workbench uses a relocation service to locate moved objects. This
service is addressed via a FlexiNet interface reference, and a particular
implementation may have one global relocation service, or as many as one per JVM.
The mechanism used for relocation is hidden behind this interface and each FlexiNet
interface reference for a mobile object contains a reference to the corresponding
relocation service. This gives considerable flexibility, and allows a different scheme to
be used for different deployment scenarios. We have developed a scaleable federated
relocation service for use in an Internet environment. This is described in the
following section.

6.1. Name Relocation Service
When a call is made on a mobile cluster, the encapsulation layer at the called host
will determine whether the cluster (still) exists at this host. If it does not, then the
host will raise an exception which is passed back to the callee and caught in the
callee’s locate layer. This then contacts the name relocation service to determine the
new location of the object. The relocation service is a federation of a number of
directories. Each directory contains a mapping from old to new cluster addresses.
Our naming service was developed with four key properties:

i) we control what entities are able to update the directories - only hosts from which
a cluster is moving may update the record for the cluster. This is possible as
Cluster names (transparently to the applications programmer) contain information

about their current network host. This prevents fraudulent changing of naming
records by “spoof” hosts or clusters.

ii) we provide a hierarchy of directories, for scale and robustness. This means that an
instance of the relocation service may decide to copy the naming record for a
cluster up the hierarchy to increase its stability, or to reduce the load placed upon
it.

iii) redirection: we allow naming records to be moved between directories so that an
optimal directory location can be chosen for the record (e.g. following the
movement of a cluster around the network).

iv) we allow caching for performance. A naming record can be kept at a previous host,
as well as being passed up the hierarchy, to reduce look-up time.

One possible scenario for using the naming service is shown in Figure 7, Figure 8 and
Figure 9. In Figure 7, a naming hierarchy is shown, with hosts (large, light-coloured
boxes), naming services (smaller, dark boxes), a ‘live’ naming record (a heart-shape)
and a Cluster (a circular object). In this figure, the Cluster moves from its original
host to another.

Figure 7 - Relocation service: Mobile Object moves

In Figure 8, the naming record for the Cluster is moved to another relocation service.
In this case, the naming service is a ‘close’ to the host the Cluster has moved to. The
move might have been initiated because the cluster is expected to move between a
number of hosts close to the naming service, rather than staying at the new host. A
link is provided at the previous naming service, to allow the cluster to continue to be
found by other objects with references to its original directory. It should be noted
that the link is not, however, to the cluster itself, but to the directory. Generally the
naming record will move much less often than the cluster, so although we use
tombstoning, it is only between naming records that move both infrequently, and
usually to robust hosts, rather than between clusters, that may move often, and to
unreliable hosts.

Figure 8 - Relocation service updated

In Figure 9, the link from the original host’s naming service is copied from itself to its
(well-known) parent. This means that in the event of failure or of garbage-collection
by the original directory, the cluster can still be found by the infrastructure by
searching back up the tree, but means that while the link still remains, it is cached
and may provide a performance improvement on traversing the naming service
hierarchy.

Figure 9 - Relocation service - caching and copying

7. Implementation Status
The Mobile Object Workbench version 1.0 is currently in use by the members of the
ESPRIT FollowMe project. The current implementation supports clusters, mobility
and transparent communications as described in this paper. Current work is
enhancing the workbench in three ways.

1. We have started work on the design and construction of a federated network class
loader, to allow support for mobile objects that have different views on the Java
class name space. Currently a place cannot support two clusters that have different
interpretations on the mapping between the class named ‘A’, and the code
implementing this class. These enhancements are important in an Internet
environment where there is no global consensus on class names - and to support
evolution of classes.

2. We are currently implementing several of the security abstractions outlined in
section 5.6. We have a Security Manager implementation which can enforce
different security policies based on the identity of the cluster invoking a call.

3. The current implementation of the Relocation Service does not support the
migration of directories. We intend to rectify this in the near future.

In addition to specific Mobile Object Workbench issues, work on FlexiNet is
continuing. We have recently created secure bindings (using SSL) and both IIOP and
transactional support are underway[11].

8. Summary

The Mobile Object Workbench was designed primarily to add mobility transparency to
the distribution transparency provided by FlexiNet. In this paper we have shown that
in order to do this we must add clustering and re-binding mechanisms. If mobile
objects are to be used to support autonomous agent systems, then security
requirements lead to the need for encapsulation mechanisms so that hosts and agents
may communicate and co-operate without the need for complete trust. We have
approach the design of the Mobile Object Workbench as a distributed system problem,
as it has all the traditional issues related to distributed systems; scale, robustness,
independent failure modes, distrust, decentralised administration, multiple name
spaces and diverging code bases. This approach has lead us to design an architecture,
and implementation, that can evolve to meet future needs, and we believe this gives it
clear advantages over the ad-hoc approaches of existing mobile agent systems. In
addition we have designed the system as a natural extension of the Java language.
This makes it straightforward to use, and allows programmers of mobile objects to use
the full language facilities.

1 “Java Remote Method Invocation (RMI)” Specification
http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html

2 “CORBA/IIOP 2.1 Specification” Object Management Group. Aug. 1997.
http://www.omg.org/corba/corbiiop.htm

3 OrbixWeb - A Java ORB from IONA Technologies
http://www.orbix.com/products/internet/orbixweb/

4 VisiBroker - A Java ORB from VisiGenics
http://www.visigenic.com/

5 “ObjectSpace Voyager Core Technology”, ObjectSpace.
http://www.objectspace.com/Voyager/

6 “FlexiNet - A flexible component oriented middleware system”, Richard Hayton,
Andrew Herbert. SIGOPS ’98 (Submitted)

7 “FollowMe project overview”, FAST e.V.
http://hyperwav.fast.de/generalprojectinformation

8 “FlexiNet - Automating application deployment and evolution”, APM Ltd.
http://www.ansa.co.uk/Research/Flexinet.htm

9 Marlena Erdos, Bret Hartman, Marianne Mueller. “Security Reference Model for
the Java Developer's Kit 1.0.2”, Sun Microsystems. Nov. 1996.
http://java.sun.com/security/SRM.html

10 “The SSL Protocol”, Netscape Inc.
http://home.netscape.com/newsr ef/std/SSL.html

11 “A Reflective Component-Based Transaction Architecture” Zhixue Wu, APM Ltd
Middleware ’98 (Submitted)

