
The Hollowman

an innovative ATM control architecture

S. Rooney

University of Cambridge, Computer Laboratory
New Museums Site, Cambridge CB2 3QG.

Telephone: 44 1223 334650. Fax: 44 1223 334678.
email: Sean.Rooney@cl.cam.ac.uk

Abstract
The current implementation of out-of-band control in ATM networks inhibits their successful
exploitation. The confusion in signalling protocols between application services and their resource
requirements results in the loss of one of the key advantages of ATM which is the ability of
applications to decide the requirement of their connections. The control being immutably built
into the switches results in switch vendors, rather than service suppliers, de�ning the management
policy which best suits those services.
The World Wide Web has recently become one of the most important services on the internet

but was unimagined �ve years ago. Clearly history should teach us of the impossibility of pre-
dicting the services that will be in common use in the near future. It is not at all obvious how
one can de�ne a priori the required control policy for these as yet unknown services.
This paper presents an innovative control architecture called Hollowman, which devolves control

from the ATM switches into an application level distributed processing environment.

Keywords
ATM, delegated control, distributed processing

1 INTRODUCTION

As (Crosby, 1995) points out, current ITU-T signalling protocols, such as Q.2931 (ITU-T, 1994),
are awed due to the lack of a clear distinction between application level services and their
communication requirements. A signalling protocol should specify how to establish connections
with arbitrary requirements and let applications decide which connections they need in order to
implement services, rather than trying to specify a complete set of connection types within the
signalling protocol itself.
It is clearly impossible to try and de�ne all future services; this means that signalling pro-

tocols will constantly need to be modi�ed as new services are required and network users will
be frustrated in their desire to implement these innovative services. These two points combined
will seriously inhibit the introduction of ATM. The limitations of the standards are evidenced
by work such as OPENET, (Cidon, 1995), which is seeking to extend the Private Network to
Network Interface (PNNI) (PNNI, 1994), in order to make it usable for intra-networking.
Orthogonal to this is the fact that currently the control policy is typically implemented in

software running on the physical switch. Just as service suppliers should be able to decide on the
resource requirements of the connections used in their services, so they should be able to de�ne
the policy to control those connections. At the moment this is not possible.

Switching Network

Physical Link

Control Path

Control and Management
 on Distributed
 Processing Platform

Simple End System

Simple End System

Figure 1 ATM Network with devolved management and control.

What we propose is to devolve control out of the physical switches into a distributed application
level control architecture. Figure 1 shows the relationship between the control architecture and
the controlled network. This control architecture opens up the management of the ATM switches
and devices and enables service providers greater exibility in the management of their services.
At the Cambridge Computer Laboratory we have built an ATM control architecture called the
Hollowman, based on these concepts.
Such an approach is similar in principle to that of the TINA consortium (Barr, 1993) in as

much as they both use the techniques of distributed computing. However as (Crosby, 1995) points
out TINA remains compatible with existing control and management standards when it is their
rigidity which is one of the key problems to overcome.
The X-Bind architecture described in (Lazar, 1996) is closer to that described here. Although

there are key technical di�erences between the Hollowman and X-Bind which will be evidenced
in the rest of this paper, the major di�erence is philosophical. We believe that there will be no
one single, ubiquitous ATM control architecture. Our work is geared towards the development
of a necessary infrastructure - called the Tempest - which allows the simultaneous execution of
many di�erent control architectures over the same physical network. Although the Hollowman is
a fully functioning control architecture in its own right, we view it more as a set of components,
techniques and algorithms which can be used and reused in other control architectures within
this framework rather than as a future standard. The mechanics of how control architectures can
be made to coexist is detailed in (van der Merwe, 1996), the rest of this paper concentrates on
the Hollowman.

1.1 Terminology

A Domain is a logical node of the controlled network, which is de�ned by the set of resources
that it contains. An Application is a schedulable entity within some Domain to which resources
e.g. CPU time, may be assigned.

A Service Type is a well de�ned task that a given Application can carry out on behalf of
another. An instance of a Service Type is called a Service. A Service O�er is the means by which
the existence of a Service is advertised within the control architecture. A Service O�er de�nes:
the type of the Service; the location of the Service; the protocols which may be used to access
that Service.
The process of Trading is the act of matching the requirements of a service user for a Service

with the set of available Service O�ers. The process of Rei�cation is the resolution of a Service
O�er into a access point for that Service. Rei�cation involves the reservation of su�cient resources
within the control architecture to permit an Application to use the service.
A Connection is a set of resources allocated to two or more applications across the network in

order to exchange information. A Connection Type is de�ned by the nature, amount, time period
and location of the resources that need be allocated to a Connection.

1.2 Overview

First, the concept of trading is discussed and some extensions within the the control architecture
are presented.
Second, the soft switch which is both the interface to the physical switch and the encapsulation

of a switch control policy is explained.
Third, the host manager which manages the resources within a given domain is introduced

and the means by which the host manager allocates one resource - virtual circuit identi�ers - to
applications is detailed.
Fourth, the means by which connections are created across the network by the connection

manager is explained. The concepts of caching frequently used connections and lazy evaluation of
connection end points in order to achieve better set-up times are introduced.
Fifth, the novel concept of an application speci�able call closure is presented. The interest of

applications being able to take advantage of their high level knowledge in order to be able to
optimise their resource usage is motivated.
Finally, we describe the set of Application Programmer Interfaces (API) that the Hollowman

o�ers.

2 TRADER

A Trader is an application that maintains a set of available service o�ers for a given domain and
whose location is well known within that domain. Domain applications register themselves with
their trader at start-up and in doing so they obtain a name which is unique within the scope of
their domain.
Trading is hierarchical within the control architecture, i.e. an attempt is made to �nd a match

for a service request �rst of all within the same domain as the requestor and if this fails, within
the scope of a higher level. Thus the use of service providers which are, in some sense close, is
favoured; this is particularly advantageous if a domain corresponds to a single work-station, in
which case optimised forms of communication between the service provider and user are employed.
Within the current implementation of the control architecture two levels of trading exist: a

trader for each domain and a trader which federates all these traders. For convenience we term a
trader that maintains o�ers for a given domain as a domain trader and the single encompassing
trader as the federating trader. The domain traders maintain service o�ers for general applications

Domain

Domain

Domain

Federation

Federated Trader

Domain
Trader

Domain
Trader

Domain
Trader

Figure 2 Example of three federated domain traders.

and the federated trader maintains domain trader service o�ers. Figure 2 shows a federation of
three domain traders. At regular intervals the federated trader ensures that the domain traders
are still active and if not removes them from the federation. All o�ers registered at a failed domain
trader implicitly are no longer available within the federation.
Since domain traders are recorded as service o�ers, they may themselves be the subject of service

requests. In particular it is advantageous for a given domain trader - trader T1 to establish a
connection with another, trader T2 if the service o�ers of T2 are often required in the domain
T1.
Trading is a well understood concept and has existed in Distributed Processing Environments

such as ANSA (APM, 1995) for quite some time; the federation of traders and the garbage
collecting of service o�ers for failed applications is a natural extension of the basic trading concept.
The originality of trading in the control architecture comes from the use of trader knowledge for
domain resource management (this is detailed in Section 4) and the employment of trader service
o�ers in ATM signalling (this is detailed in Section 5).

3 SOFT SWITCH

The Soft Switch has the following roles within the control architecture: it de�nes a set of logical
control interfaces to the switch; it implements a control policy for the switch and it encapsulates
the precise method of interacting with the physical switch.
The relationship between the physical switches and the soft switches is one-to-one. A soft

switch contains a representation of the physical switch's resources as well as a set of switch
control services. The complete control policy for a given switch is partitioned across these switch
services. The di�erent control policies that each switch service implements are independent. This
separation permits di�erent aspects of control policy to be kept distinct and allows di�erent
control functionality to be manipulated using a speci�c and dedicated interface. In what follows
a switch denotes the combination of the physical switch and its associated soft switch.
A soft switch holds state about the physical switch in order to perform its control functions.

For example the connection management service needs to know about the current resource usage
on the physical switch in order to determine if a demand for a connection should be satis�ed or
not. In consequence, the soft and physical switch have to resynchronise in the event that either
of them is stopped and restarted.
X-Bind uses CORBA/OMG (OMG, 1991) as the underlying platform for communication be-

tween all entities including exchanges between the management layer and managed network ele-
ments themselves. In our opinion running CORBA/OMG on switches is unnecessary and restric-
tive. The Hollowman communicates with the physical switch using the Ariel (van der Merwe,
1996) switch management interface. An Ariel server runs on the physical switch and an Ariel
client runs in the same address space as the soft switch. The interface is de�ned by a set of ser-
vices. A minimal set of services is de�ned for a switch but di�erent switches may extend/enhance
this set. The precise services that the physical switch supports is determined by the soft switch
at start-up time. Figure 3 shows a schema of a switch.

...

Connection
Service

 Alarm
Service

Ariel Client

Ariel Server

Performance
Service

Soft Switch

Figure 3 Example showing a soft switch containing three switch services.

It is important to stress that Ariel does not de�ne a single wire representation for commu-
nication between the Ariel client and server. Many di�erent mappings between the Ariel in-
terface description and an underlying communication mechanism are possible e.g. RPC/UDP,
CORBA/IIOP, SNMP/UDP. In the last case an SNMP daemon running on the switch takes the
place of the Ariel server. A more detailed account of Ariel is given in (van der Merwe, 1996).

4 HOST MANAGER

The Host Manager is an extension of ideas developed within the Nemesis real-time operating
system (Leslie, 1996). Nemesis allows applications to manage the resources allocated to them at
a very �ne level of granularity and thus enables them to make precise guarantees about their
behaviour.
The host manager is an entity which allocates resources to applications within a given domain.

It is common that this scope corresponds to a single work-station but is not a constraint of
the model. However all applications are resident in one and only one domain. We reserve our
discussion of host managers to the features which are associated with the control of the ATM
network, but it should be noted that the host manager is a much more general concept than
presented here.
A connection is the means by which one application sends information to a set of others across

Connection
Source

Connection
Sink

Connection Initiator

Host
Manager

Host
Manager

Data Path

Control Path

Host
Manager

Figure 4 Example showing third party connection set-up.

the network. All connections have one sending application, called the source, and N receiving
ones, called sinks.
The host manager has two interfaces: one which applications use to initiate connections and

one which the connection manager uses to inform a host manager that another entity wishes to
establish a connection with an application in the host manager's domain.
An application makes one of four requests in order to establish a connection:

(1) connect a sink service o�er to a source service o�er;
(2) connect itself as sink to a source service o�er;
(3) connect itself as source to a sink service o�er;
(4) connect a source service access point to a sink service access point.

In all four cases the host manager will check if the sink and source are actually both local
and hence do not require a network connection in order to communicate. All but (3) may require
joining a branch to a existing connection, in which case the host managers and connection manager
recognise this and join at the appropriate place within the multi-cast tree. For the applications
this is transparent.
It may be possible for applications to learn of the existence of an available service other than by

using the control architecture trading mechanism which is why the (4) type request is supplied.
For (1) and (4) the initiator of the request can be the sink or the source of that connection or
neither. Figure 4 shows an example of third party connection set-up.
One managed resource is the virtual circuit identi�ers (vci) that a given domain has at its

disposal. The host manager at start-up obtains the set of Service Access Points (SAP) that have
been allocated to that host within that control architecture. The SAP is the handle through
which both applications and the host manager manipulate vci's. Host managers do not assign
vci's directly to applications, rather they allocate them SAPs which the connection manager
maps to a vci during connection creation.
An application wishing to establish a connection asks the host manager for a free SAP. If one

exists the host manager sets the state of the SAP to Reserved and accounts it to the application.

Offer

X

Y

App. Id.

 9807

 7654

Call Back

 C1

 C2

Obtain SAP For Sink Offer = X

SAP
0
1
2

VCI
Free

 220
 Free

Sink SAP Table
Application

-
4567
-

SAP
0
1
2

VCI
Reserve
 220

 Free

Sink SAP Table
Application
9807
4567
-

Offer

X

Y

App. Id.

 9807

 7654

Call Back

 C1

 C2

Notify for SAP = 0, state = Active, VCI = 221

SAP
0
1
2

VCI
221

 220
 Free

Sink SAP Table
Application

9807
4567
-

Offer

X

Y

App. Id.

 9807

 7654

Call Back

 C1

 C2

Offer Table

Offer Table

Offer Table

Do Callback C1 listening on VCI = 221

Time=T

Time=T+1

Time=T+2

Figure 5 Example showing the host manager state changes during the establishment of a con-
nection.

The SAP can be viewed as a token for a vci which will redeemed during connection creation; the
connection manager having a more complete knowledge of the current network connections can
decide what is an appropriate vci to map that SAP to.
Each time that a connection is established to an application within the scope of a host manager,

the state of the SAP is set to Active and the SAP/vci table mapping is updated. The freeing of
a Reserved SAP simply sets its state back to Free, the freeing of an Active SAP causes the host
manager to ask the connection manager to release the connection and to notify the other host
managers involved about the change in state. If an application fails before releasing a SAP then
at some subsequent moment the domain trader will realize that the application has disappeared
and tell the host manager to release any resources associated with that application.
An application registering a service o�er associates a call-back with that o�er in the host

manager. The call-back is invoked when an attempt is made to reify that o�er. After a successful
invocation of the call-back the service provider application should be able to guarantee the service.
Before an attempt is made to reify an o�er no resources at all may have been allocated to it.
Figure 5 shows a simpli�ed version of the sequence of events which occur when a host manager
receives a request to reify an o�er as a sink in a connection.
The connection manager requests the host manager to �nd a free SAP and to reserve it for the

o�er X. The host manager veri�es X is an o�er present in its o�er table, �nds the application
that supports X and allocates it SAP = 0. At a later stage the control manager noti�es the host
manager that a connection has been established to SAP = 0 and that the vci associated with

it is 221. The host manager �nds out that X is the o�er waiting on SAP = 0, and executes the
call-back for X.

5 CONNECTION MANAGER

Within the control architecture the Connection Manager has responsibility for establishing and
tearing down connections between applications in distinct domains. In order to achieve this the
connection manager has knowledge of the topology of the ATM network. It acquires this knowledge
during the bootstrapping of the network or the network elements. From the point of view of the
connection manager the network is made up of: host locations, switch locations, device locations,
e.g. a camera.
The initiators of requests to the connection manager for connection creation are always domain

host managers. The connection manager identi�es the sink and source domains of the connection
and determines a sequence of switches which constitutes a route between them. It then uses the
host manager of the sink and source domain and the soft switches in order to reserve the required
resources and establish the connection.
In the general case many routes may exist between two domains and the connection manager

uses a routing algorithm to distinguish a 'best' route. Currently the default algorithm is a variant
of the weighted spanning tree algorithm. The weights associated with each of the switches in
a route are de�ned as a function of the current resource usage on a switch and the necessary
resources required for a connection. The exact formula used to turn these two pieces of information
into a weight is switch dependent and an intrinsic part of the control policy of the connection soft
switch. However, within the framework of the Hollowman any of the diverse techniques described
in (Lee, 1995) for resource constrained routing could be used.
The connection manager frees the resource associated with a connection when a host manager

asks it to do so. The host manager may have been explicitly asked by an application or it may
have decided that the application involved in the connection had failed.
The connection manager may decide not to remove a given connection between two domains if

there are frequent requests for connections of that type between those domains, i.e. the connection
may be cached. The connection can then be re-used the next time an appropriate connection
request is received, thus reducing the latency in the set-up time. It should be noted that only
the Hollowman makes a distinction between connections that are in use and connections that are
cached; as far as the physical switch is concerned they are indistinguishable. Which connections
are likely to be reused is highly application speci�c. This makes the use of connection caching
problematic within a generic control architecture, but highly promising for application speci�c
control architectures.
The demand for connection creation involves modifying state in at least four places: the source

host manager, the sink host manager, the connection manager and the switches. It is possible that
the attempt to create a connection fails after state has been already updated in one or more of
the above. In this case all the updates must be undone and the original state before the creation
restored. Thus a connection creation is in fact a distributed transaction which can be rolled back
if the creation fails at any stage. This problem is made more complicated by the fact that the
state in the connection and host managers should be locked for as short a time as possible to
optimise concurrency and so we cannot, for example, simply lock the whole of the connection
manager during an operation.
We have experimented with making the communication with the switches for creation and

deletions of connections asynchronous in order to minimise the amount of time an operation
occupies in the control architecture. Since the control architecture has a complete view of the

state of resources in the switch, once the control architecture has decided that, say, a create
operation is valid, then the only way the switch can refuse the connection is due to switch failure.
The network connection is only marked complete when each switch has returned successfully. An
application after asking for the creation of a connection will be forced to wait until the connection
has been marked complete, however the application will not cause another application to block
because the network connection belongs to it alone. In addition the create operation is executed
in parallel on all the switches that it involves as well as with the modi�cations in state within
the host and control manager, further optimising the connection creation time. The price of
this is the introduction of asynchronous communication and hence some additional complexity.
The above type of connection creation/deletion we denote as lazy in analogy to lazy evaluation
within programming languages (Bird, 1988). We have experimented with this technique within
the Hollowman and noted the expected factor of decrease in connection set-up time, as the N
switches do their processing in parallel. The drawback of this technique is that it supposes that
once a connection has been authorised by the control architecture that the physical switch cannot
refuse it, if the switch does refuse it then recovering from the failure is further complicated.
The control architecture has complete knowledge of the topology of the network and maintains

information about the current resource usage in its nodes. When the network is interconnected
with a larger network it is neither desirable or feasible to have such information for the uni�ed
network. The interconnection of a network managed using the control architecture described here
and other networks outside its control is a subject of on-going research.

6 CALL MANAGER

There are advantages to being able to group logically associated connections together into a higher
conceptual entity. For example, it is likely in the bi-directional communication case that if one
connection fails then the other should automatically be removed as well. We term this logical
grouping of connections a Call.
Applications are free to associate any group of connections into a call. This avoids attempting

to de�ne all call types that all applications will ever want. We have adopted a similar approach to
that de�ned in (Minzer, 1991), having a language in which an application may de�ne a complex
mesh of connections for, say, a video-conferencing application. What makes the concept of a
call powerful is by allowing an application to create the control behaviour that is to be used
within it. The associations of a group of connections with the control behaviour to manage those
connections we term a Call Closure. Using call closures, applications can take advantage of their
high level knowledge about how connections are to be used within a service in order to optimise
the use of their resources. The call manager is the environment in which these call closures are
loaded and executed.
An example illustrates the point: a security guard monitors video from two di�erent rooms

each with their own camera. Suppose that the rooms are adjacent and that the two cameras are
connected to the same switch. We could establish two distinct connections from the cameras to the
display of the security guard. However, the guard will only ever observe one camera at a time and
that therefore at any given moment one of the connections is redundant. Knowing this we build a
call closure which contains a connection from each camera to the display and which multi-plexes
the two connections every 3 seconds. The call closure creates one connection to the display from
a vci on the output port of the camera connected switch and periodically interchanges the input
vci with which it is associated. Figure 6 is a schema for this example. (Ravindran, 1996) describes
architectural and protocol techniques for optimised multi-cast transport, allowing many sources

Display

Camera A

Camera B

(Port=A, VCI=210)

(Port=B, VCI=180)

(Port=C, VCI=55)

Control For Connection =
When Time & Not Alarm
 With Switch 2
 If (C,55) -> (A, 210)
 Then (C,55) -> (B, 180)
 Else (C, 55) -> (A, 210)

Switch 1 Switch 2

Figure 6 Example showing how call closures allows e�cient resource usage in an application.

for example, to share the same distribution tree multiplexing them temporally. Call closures allow
a means by which an application can de�ne how this is to be done on a per-application basis.
The control de�ned by the application within the call request may only manipulate the connec-

tions allocated to that call, preventing calls interfering with each other; (Rooney, 1996) examines
the motivation for call closures and their implementation within the Hollowman in greater detail.
In summary, the Hollowman allows application programmers to create a behaviour - de�ned in

a dynamically loadable programming language - for the connections that make up their services
and have that behaviour execute at the heart of the control architecture during the lifetime of
those connections. This allows applications great exibility over the network resources allocated
to them.

7 HOLLOWMAN APIS

Applications at start-up, connect with their host manager and request the creation of an API
instance appropriate for its needs. Three di�erent types of API are currently present in the
Hollowman:

� a BSD-socket like API;
� a service o�er API;
� a call closure API.

The BSD-socket like API allows applications to do the normal: open, listen, connect, receive,
close, type primitives on the Hollowman SAPs, no notion of trading or services is involved.

Applications which do not wish to use the notion of service are not obliged to. The second API
involves importing service o�ers from the Hollowman trader and reifying those o�ers into SAPs,
the rei�cation is achieved by the use of the host manager and connection manager as described
in Sections 4, 5. Thus applications can be unaware of the location of the entities they are
communicating with and details such as joining to multi-cast trees are handled by the control
architecture transparently, thus simplifying the application.
The third API is simply a gateway in which user de�ned call closures can be loaded and

executed within the call manager.

8 IMPLEMENTATION

The Hollowman is written in C/C++ and uses Dimma (Li, 1995) for application-to-application
communication. Dimma is a framework ORB, on which real-time ORBs can be constructed.
Currently all of our communication is using a Dimma implementation of the standard CORBA
protocol IIOP. The call closures and call manager are written in Java and interface to the rest of
the control architecture using the Java-to-C API.
The test-bed in which we experiment with the control architecture contains a small set of Fore

Switches attached to HP, DEC Alpha and Solaris machines, and some ATM Cameras (AVAs).
Most of the experiments have been carried out using Ariel/SNMP for communication with the

switches. This is not ideal in terms of performance, but allows any switch running an SNMP dae-
mon to be managed. Currently in the unoptimized version of the control architecture connection
set up across a single switch requires approx. 200 milli-seconds. This breaks down to 10 % for
application-to-application communication, 40 % for application processing and 50 % for commu-
nication with the switch. This is of a similar order of magnitude to that de�ned in (Veeraraghavan,
1995) for an implementation of B-ISUP. We con�dently expect to be able to reduce this latency
by an order of magnitude as more e�cient implementations of Ariel become widely available
and by the use of lighter inter-application communication mechanisms. Caching the connection
e�ectively removes the part of the connection set-up time required for communication with the
switch; lazy connection evaluation allows the partial parallelisation of the communication and
processing with the di�erent switches, thus is most useful when there are many switches.

9 CONCLUSION

This paper has presented the innovative Hollowman control architecture which devolves control
out of the physical switches and into a distributed processing environment.
We have detailed the techniques by which:

� applications learn of the existence of services;
� physical switches are managed within the control architecture;
� connections are established between applications;
� resources associated with connections are managed.

We have showed how the exibility of the Hollowman allows us to experiment with techniques
such as connection caching and lazy end point evaluation. The concept of a call closure as a
bundle of logically associated connections together with the control to manage those connections
has been introduced.
The Hollowman demonstrates that it is possible to delegate many control functions out of ATM

switches and that by doing so we permit the full exploitation of ATM. We do not however believe
that in the future that there will be one, single, standard, ATM control architecture and that in
consequence we are building an infra-structure in which many control architectures: Hollowman,
X-Bind, TINA, Q-2931 may run simultaneously over the same network elements.

10 REFERENCES

Architecture Projects Management Limited (1995) ANSAware/RT 1.0 Manual ANSA project .
Barr, W. J. Boyd, T. Inoue, Y. (1993) The TINA initiative IEEE Commun. Mag. March 1993
Bird, R. Wadler, P. (1988) Introduction to Functional Programming Prentice Hall .
Cidon, I et al (1995) The OPENET Architecture Sun Microsystems Laboratories SMLI TR-95-37 .
Crosby, S. (1995) Performance Management in ATM Networks Cambridge University PhD dis-

sertation, available as technical report TR 393 .
ITU-T (1994) Draft Recommendation Q.2931, Broadband Integrated Service Digital Network

(B-ISDN) Digital Subscriber Signalling Systems No. 2, User-Network Interface layer 3
speci�cation for basic call/connection control ITU publication.

Lazar A, and Lim, K.S. (1996) Realizing a Foundation for Programmability of ATM Networks
with the Binding Architecture IEEE Journal on Selected Areas in Communication, Vol
14, Sept. 1996 .

Lee, W. Hluchyj, M. Humblet, P. (1995) Routing Subject to Quality of Service Constraints in
Integrated Communication Networks IEEE Network July/August 1995 .

Leslie, I. et al (1996) The Design and Implementation of an Operating System to Support
Distributed Multimedia Applications IEEE Journal on Selected Areas in Communication,
Vol 14 .

Li, G. (1995) Dimma Nucleus Design APM Technical Report, APM 1553.00.05 .
Minzer, S. (1991) A Signaling Protocol for Complex Multimedia Services IEEE Journal on

Selected Areas in Communication, Vol 9, Dec. 1991 .
OMG (1991) The Common Object Request Broker: Architecture and Speci�cation Document

Number 91.12.1, revision 1.1 .
PNNI (1994) ATM Forum contribution, Draft Speci�cation 94-0471 R7 .
Ravindran, K. (1996) Architectural and Protocol Frameworks for Multicast Data Transport in

Multi-service Networks ACM SIGCOMM Computer Communication Review, Jan. 1996 .
Rooney, S. (1996) Connection Closures: Adding application de�ned behaviour to network con-

nections Submitted to Computer Communication Review, Oct 1996 .
van der Merwe, J.E. and Leslie, I. (1996) Switchlets and Dynamic Virtual ATM Networks Proc-

ceding's IM'97, San Diego.
Veeraraghavan, M. La Porta, T. Lai, W.S. (1995) An Alternative Approach to Call/Connection

Control in Broadband Switching Systems IEEE Communications Magazine, Nov. 1995 .

11 BIOGRAPHY

Sean Rooney received the B.Sc and M.Sc degree in Computer Science from The Queen's University
Belfast in 1990 and 1991 respectively. After three years at the research center of Alcatel Alsthom
at Marcoussis working in the �eld of network management, he started working for his PhD degree
at Cambridge University.

