
FlexiNet

A flexible component oriented middleware system

Richard Hayton, Andrew Herbert. APM Ltd.

Introduction

Generally, research middleware platforms have provided application programmers with facilities for just one form
of communication, for example remote procedure call, or transactions or replication. Industry middleware platforms
are been asked to provided a kit bag of “plug and play” capabilities, for example transactions, replication,
authentication, privacy, auditing and many other features. In CORBA, for example, a single set of nested choices
is effectively being made. Inherent in the design of middleware is the need to make appropriate trade-offs. Current
systems remove choice and impose ‘one size for all’. Unsurprisingly this does not fit all needs.

This suggests a component-oriented view of middleware is more appropriate. This would allow an application
developer to choose appropriate components that embodied appropriate trade-offs. Designing middleware in a
component oriented fashion is a difficult problem. Middleware tends to make use of automatically generated code
(for example stubs) that are by their very nature hard to change. Traditionally a stub will be responsible for
converting an invocation into an untyped byte array representation. This may be manipulated efficiently, but as
language level typing is discarded, or separately encoded, the code required to plug-in additional capabilities is
often esoteric. For all of these reasons existing middleware systems tend to be monolithic, or only partly
configurable.

The FlexiNet Platform is a Java middleware system built as part of a larger project to address some of the issues of
configurable middleware and application deployment. Its key feature is a component based ‘white-box’ approach
with strong emphasis placed on reflection and introspection. This allows programmers to tailor the platform for a
particular application domain or deployment scenario.

We have used FlexiNet to create a “Mobile Object Workbench”, which can provide location transparent access to
interfaces on objects which themselves may move from host to host. The next phase of the project is to provide
security services, so that objects may authenticate communications, and ensure that they themselves have not
been tampered with whilst in transit. Other ongoing work includes an IIOP protocol stack and SSL integration.

In this paper we give an overview of the FlexiNet architecture, highlighting how its approach differs from other
middleware architectures, and the benefits that result from the new approach. We believe the FlexiNet is a clear
example of the advantages of language level introspection and reflexive techniques.

Architecting for Components

FlexiNet has a straightforward computational model. Communication is selectively transparent. We endeavour to
make remote communication appear identical to local communication, but also allow a program to control the
trade-offs made when binding to the remote destination. We do this to maximise the independence of application
code from ‘systems’ code. We use the ODP notion of interfaces as the access points for objects, and provide
transparent interface proxies, so that objects may be accessed remotely. When parameters are passed to a
method, we pass references to interfaces by reference, and pass object values by copying. This follows the Java
language model as closely as possible, without introducing ‘special’ tag classes to indicate remote interfaces, or
value objects.

The FlexiNet engineering model has three central concepts. Interfaces are represented by proxies. Proxies enforce
the typing of the remote interface, and perform remote access by utilising binders. Each binder is an object
capable of creating a generic binding to a local or remote object, and different binders embody different
application requirements or engineering strategies. Binders may make use of other binders in a recursive way.
This keeps individual binders small, and allows application domain-specific binders to be easily created. To
manage the flexibility, FlexiNet supports the notion of multiple name spaces for interfaces, and names are both

strongly typed and structured. Names may be constructed out of other names, or arbitrary data, making the
management of aggregate and indirected names straightforward.

Components and configuration were the central motivations of the design of FlexiNet. Indeed, had a sufficiently
configurable system have been available, then FlexiNet itself would never have been built. As an example some of
the components involved with the implementation of an interface proxy are illustrated in Figure 1. Two significant
features are that the standard stub implementation allows a wide variety of binding protocols to be used, and
secondly that the implementation of each binder consists of a composition of communication layers, with a high
degree of reuse of layers between different binders. Different binders might use different standard protocols (e.g.
IIOP, ANSAware REX), different marshalling techniques, different policies for buffer reservation or thread usage
and have other performance related features. Binders may also provide different communication abstractions, for
example a binder may manage communication to a replicated object, or perform encryption or auditing. In the
design of the Mobile Object Workbench, a binder was created to manage communication with objects that are
able to move between hosts, by tracking them using a distributed location service. This is an example of a
specialist binder created by re-plumbing existing layer components, and adding a small amount of custom
functionality.

This approach to software engineering keeps the infrastructure small and, together with Java’s dynamic loading
of classes, ensures that an application will only load those components which it actually needs.

Negotiation
Binder

Caching
Binder

Local
Reflection Makes use of

Standard
Proxy
(stub)

Special
Case
Proxy

ChoiceChoice

P
ro

xy
Im

pl
em

en
ta

tio
ns

BinderInterface
Proxy

Session Layer

TCP Layer
Triv Namer

Rex Layer

IIOP Layer

Call
Layer

Segmented
Input/Output

Buffers

Scarlet

Encapsulation
Layer

Blue GreenRed

Names as
Objects

IOR Layer UDP Layer

Serialization
Layer

Global NamerC
om

m
un

ic
at

io
n

La
ye

rs
R

es
ou

rc
e

Ab
st

ra
ct

io
ns

Abstract Binder
Each binder implements a

different protocol/abstraction
BinderBinder

High Level Binders
These implement binding strategies (For

example, choosing between protocols, the
reuse of existing bindings, and end-to-end

negotiation)

Basic Binders
Binding tactics;

each combines a
number of layers

Resource
Pools

Figure 1

Generic Communications

This is a reflexive technique central to the design of FlexiNet. Rather than using stubs to convert an invocation
directly into a byte array representation, instead we leverage Java’s runtime typing support to represent the
invocation in a generic (but fully typed) form. The layers of the FlexiNet communication stack may then be viewed

as reflexive meta-objects that manipulate the invocation before it is ultimately invoked on the destination object
using Java core reflection.

This approach has a number of advantages. Middleware (or application) components may examine or modify the
parameters to the invocation using the full Java language typing support. Debugging is made straightforward as
information is kept ‘in clear’ and splitting the middleware into components is simplified, as the language typing
support provides the necessary machinery to ensure consistency of use and to reduce cross dependencies in the
code. In fact the role of the stub is reduced to a conversion from a type specific to type independent invocation.
All marshalling/serialization can be performed by using the run-time type introspection facilities, and is not
dependant on the application or auto-generated code.

Figure 2 illustrates how a communication stack can be considered as a number of meta-objects that perform
reflective transformations on an invocation. Third part meta-objects can be fully general and are fully type-safe.
For example a replication meta-object might extract replica names from an interface reference by consulting an
external database. It might then perform invocations on each replica in turn. As this processing is performed in
terms of generic invocations, the is no need for each of these calls to pass through stubs and so the code can be
both straightforward and efficient.

Wire CommunicationsWire Communications

STUB

Client Side
Meta Objects

Destination
Object

Reflective
Protocol Layers

Reflective
Protocol Layers

Generic Invocation Layer

Server Side
Meta Objects

Reflective
Protocol Layers

Reflective
Protocol Layers

A

A

G

M

M

T

M M

M

M

T

M

Typed Communication

Generic Communication

Untyped Communication

Application Code

Auto-Generated Code

Middlware Code

Third Party Code

A
G
M
T

Figure 2

Naming Interface References

FlexiNet allows great flexibility, both in the design of a communications stack and the wire format of messages. In
order to take advantage of this, the format use for interface references must be equally flexible. Traditionally,
interface references are represented by ‘bundles of bits’, and extracting fields from these bundles must be done
with care, and without the aid of language level typing. This makes it difficult, if not impossible, to extend a
system by adding new types of names, as this leads to changes in the name format and has repercussions
throughout the code.

In FlexiNet we took the approach that interface references are themselves objects. As objects they may be
converted to and from a serial byte representation in the same way as other objects are converted. This removes
the need for a specific wire format for names, and allows us to use the full generality of object typing to subclass
and otherwise manipulate interface references. This is only possible because Java provides the run time type
information required for serialization. As an example the decomposition of the name representing an interface on a
mobile object is shown in Figure 3. This is necessarily complex, but it considerably easier to manipulate that its
‘bundle of bits’ representation. As the components for storing and manipulating interface references all use class

Name and MobileName is a subclass of this, mobile names may be treated like any other in the majority of code.
This again increases the reuse of components.

class MobileName extends Name

MobileClusterName address
int interfaceId

class MobileClusterName extends Name

MobileNamer namer
Name lastKnownAddress

Name
Relocation

Service

class GloballyUniqueName
 extends Name

Name address
GlobalID id

class GlobalID

long id1
long id2

class UDPEndpoint
 extends Name

InetAddress host
int port

A name representing a remote
interface on a mobile object.
This consists of an address for
the mobile object and the
identifier for the interface on the
mobile object. (FlexiNet support
multiple interfaces per object)

A name representing a mobile
object. It consists of a the last
known address of the object,
and a reference to a relocation
services that can be used to
locate it if it has moved.

A name use to demultiplex
requests to different objects.
Each object is given an identifier
from a large namespace.

A name representing an UDP
endpoint oh a particular host.

Figure 3

Performance

FlexiNet is a component based framework, and the protocols and abstractions which currently populate this
framework were designed for modularity and reuse, rather than performance. For example, all the layers in a typical
remote method invocation stack could be implemented as one module, in order to increase performance.

However, FlexiNet is fully resource controlled, and uses pools for resources such as buffers and threads. The
modularity is an advantage here, as different pool management policies may be ‘slotted in’ in order to trade off
performance against resource usage. We benchmarked an early version of FlexiNet with UDP based
communication against Sun’s RMI and IONA’s OrbixWeb and found that over a range of computers, Java
interpreters and JIT compilers, FlexiNet performs as efficiently as either of these offerings.

Recently, we have expanded FlexiNet’s repertoire of protocols, and anticipate a significant performance increase.
Unlike RMI, which relies on native methods in order to function, or OrbixWeb, which utilises additional stub
compilation tools, FlexiNet remains 100% pure Java, with no external tools required. This makes it highly portable
across Java releases and JVM implementations. Future JIT or JVM performance increases should be fully
reflected in FlexiNet’s performance.

Summary

FlexiNet was designed to provide a flexible test-bench on which to perform code deployment and binding related
experiments. As such, the emphasis was on modularity and flexible configuration. FlexiNet has make considerable
use of language level introspection and has embraced reflexive techniques. Not only does the resulting system
have the desired modularity properties, but it also performs as efficiently as other Java middleware offerings. A
mobile object workbench as been built on top of FlexiNet as part of an European ESPRIT project related to the
investigation of Agent based programming. This design and construction of the mobile object workbench has
served both as a demonstration of the flexibility of FlexiNet, and as a powerful example of the way in which

distributed computing abstractions can be extended to embrace mobility. Ongoing work investigating issues of
security and evolution of autonomous, distributed systems.

