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Abstract

DIMMA – A Distributed Interactive Multi-Media
Architecture – is an open distributed processing
(ODP) platform that facilitates the production of
distributed applications. It has particular support
for those applications that have soft real-time
constraints, and those that make use of multi-media.

DIMMA consists of a portable layer of
distribution engineering (middleware), together with
tools to interface applications to this engineering.
The most popular commercial ODP platform is the
Common Object Request Broker Architecture
(CORBA) whose definition is managed by the Object
Management Group (OMG). In recognition of this
popularity, DIMMA supports a CORBA compliant
API so that CORBA applications may be easily
ported to or from the DIMMA platform.

This paper describes the example
implementation of DIMMA. It gives an overview of
the motivations behind the design of DIMMA and
then highlights some key features of the DIMMA
implementation. It concludes with a brief analysis of
DIMMA’s performance.

 1.  Introduction

 1.1.  The goal of the DIMMA project

Object Request Brokers (ORBs) have been
developed to provide support for distributed object-
oriented applications, hiding much of the complex
engineering needed to implement distribution. These
can now be regarded as stable technology; the most
wide-spread ORB architecture, OMG’s CORBA
[[6]], was first introduced in 1987, and many
commercial and public-domain implementations of
their CORBA ORB specification are now available.

However, combining this provision of distributed
object-orientation with support for multi-media is
not straight-forward, as it imposes a number of
requirements on the ORB:

- Support for specifying flow interfaces

 Current ORBs only support RPC type
interfaces, i.e., call an object and (possibly)
receive a return value. Multi-media

applications often require handling of
continuous flows of data being transmitted
and received.

- Control over resources used

 Many types of multi-media service are
particularly sensitive to quality of service. For
instance, a video stream must deliver its
frames at a regular and timely rate in order to
avoid the picture being jerky or corrupted.
This requires the system to guarantee that the
resources are available to deliver this quality
of service, which in turn requires the system
to provide the programmer with control over
those resources, possibly including those
provided by an underlying real-time OS.

- Support for new protocols to be easily added

 CORBA ORBs can work correctly while only
supporting one RPC protocol (IIOP). Due to
the diverse nature of multi-media though,
there are a much larger number of protocols
that a multi-media ORB may have to support,
and more are being developed all the time.
This requires a multi-media ORB to provide
an easy method for adding new protocols.

- Minimum necessary footprint

 Multi-media services make heavy use of
system resources (buffers, CPU time, network
bandwidth). For this reason, the ORB itself
should have the minimum necessary use of
such resources so as to avoid impacting the
quality of the services that it is supporting.
Furthermore it should be scaleable to allow its
use in a range of environments from small
devices to large switches.

The goal of the DIMMA project was to produce
an architecture for a multi-media ORB that met these
requirements, and a practical implementation of that
architecture, making as few assumptions as possible
about the host OS. It aimed to create a small,
efficient, modular ORB, with support for flows and
resource control, and the flexibility to add new
protocols and new styles of application interface.
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 1.2.  Project history

The DIMMA project began in April 1996 and
made four formal releases of an implementation of
DIMMA over the course of a year and a half. The
first year concentrated on developing the
architecture and then testing the ideas with an initial
implementation. The first release of DIMMA 1.0 in
November 1996, was built in a modular fashion and
supported both RPC and flow protocols, made
available to the programmer through either a
CORBA or an ODP-based interface. ISO RM-ODP
[[2]] significantly influenced the design, which in
turn was influenced by earlier work at APM [[3]].

Experience gained from this first release led to a
restructuring of the code base to improve its generic
and modular features and to add more debugging
support for the application programmer. This
reworked version was released in April 1997 as
DIMMA 1.1.

Having established the generic framework for
resource control in DIMMA 1.1, this framework was
populated to ensure that all aspects of resource usage
by all supported protocols could be controlled by the
application programmer through the medium of QoS
parameters passed in through explicit binding. Minor
changes also allowed new protocols to be
dynamically loaded at runtime. This version 2.0 of
DIMMA fulfilled all the original goals of the project
and was released in May 1997.

Finally, some time was devoted to analysing
the performance of DIMMA, and significant
improvements in its speed and robustness were
achieved. A resultant optimised version 2.01 of
DIMMA was released in September 1997.

 1.3.  How DIMMA differs from CORBA

CORBA was designed to offer applications
maximum transparency to the concerns of
distribution and to offer portability across a wide
variety of operating systems. As yet though, CORBA
does not address the needs of an increasingly large
class of applications that must deliver their results
within a particular time scale (soft real-time), nor
does it address the need for communication of
continuous flows of data such as audio or video.

DIMMA was designed to explore how the needs
of such applications may be met in the context of an
ODP platform. To this end it provides applications
with control over their allocation and use of
resources through quality of service (QoS)
parameters, and supports multi-media flows through
flow interfaces. These facilities may be regarded as
extensions to CORBA.

In contrast to some rather monolithic CORBA
implementations, a major feature of the DIMMA
design is its open flexible component architecture.

DIMMA is highly configurable: it supports multiple
protocols – new protocol implementations may be
dynamically incorporated into an application at run-
time – and QoS parameters allow an application
programmer to exercise a high level of control over
the configuration of the components that are used to
provide an engineering channel.

 1.4.  The application of DIMMA

DIMMA is intended primarily as an experimental
vehicle. The focus is on using DIMMA to identify
the needs of multi-media and real-time distributed
applications in terms of proposed core ORB
facilities and to prototype the resultant ideas.

Although DIMMA will run “out of the box”, it is
anticipated that it will be of greatest value to those
who wish to customise the core ORB. The internal
structure is very flexible and the components are
built according to a set of well defined frameworks.
For example, new protocols may be easily added
using the DIMMA protocol framework which
facilitates the reuse of layered modules.

The explicit binding model, together with the
flexible resource reservation mechanisms allow a
considerable range of applications to be built:
applications that are not possible on today’s standard
commercial ORBs. This should be of interest to
those involved in telecommunications applications
such as video on demand.

 1.5.  Paper structure

The remainder of this paper highlights particular
features of the design of DIMMA and how it has
been extended to support the achievement of the
goals outlined above. It concludes with a summary
of the performance of the final version of DIMMA,
demonstrating the results possible when explicit
control of quality of service is given to the
application programmer.

 2.  DIMMA Structure

 2.1.  Overview

DIMMA is constructed as a set of small
components that may be combined in many different
ways to suit the diverse needs of applications. This
also acknowledges the fact that the real world needs
ORBs that are high performance, down-sizeable and
scaleable. In this sense, DIMMA may be regarded as
a microkernel ORB.

The components of DIMMA are considered to be
subdivided into groups and arranged in layers; this is
also reflected in the source structure. This layering is
depicted in Figure 2-a.
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 Figure 2-a. Structure of DIMMA

DIMMA provides two interfaces for the
application programmer: a proprietary one based on
the ODP-RM concepts [[2]] – the ODP
Computational API – and a CORBA extended subset
called Jet. Jet is implemented as a personality built
on top of the ODP facilities and hence shares a
number of features with the former. Further
personalities could be added if required.

Both APIs are mapped onto a common ODP
Engineering API by the ODP Library in order to
facilitate hosting on different ORBs (or Nuclei in
ODP terminology). The DIMMA nucleus supports
the ODP Engineering API directly, whilst adapters
can be provided for other ORBs. To date only one
experimental adapter has been produced, which was
to allow applications written using Jet or ODP to
communicate over APM’s ANSAware product.

The DIMMA nucleus provides the distribution
engineering apparatus such as binders and
communications protocols. Currently two protocols
are provided: the CORBA Internet Interoperability
Protocol 1.0 (IIOP) for interoperability with other
vendors’ ORBs and a proprietary protocol (ANSA
Flow), optimised for transporting multi-media flows.
New protocols can be added within a well-defined
framework; furthermore existing protocol
components (e.g., the TCP part of the IIOP stack)
can be reused by these new protocols as required.

 2.2.  CORBA personality

Jet, the CORBA personality, supports most of the
CORBA C++ language mapping and has an
associated IDL compiler, though it does not support
any CORBA-style repositories. It is intended for
application writers who are already familiar with
CORBA and who may wish to port their applications
between DIMMA and another vendors ORB.

 2.3.  ODP Library

The ODP Computational API is based on the
concepts of the ODP Reference Model [[2]]. It
provides the minimum facilities necessary for
writing distributed applications but also affords
considerable flexibility. For example, unlike
CORBA, an ODP application object can export
multiple interfaces.

It is intended primarily for hosting personalities
such as Jet rather than for writing applications. For
this reason there is no IDL compiler provided and
hence an ODP application writer must provide their
own stubs.

The ODP-RM concepts supported by the ODP
computational API are: objects; operations;
interfaces; terminations, and invocations. In addition,
the concepts of signature and invocation reference
are introduced, where a signature defines the
operations and terminations of an interface, and an
invocation reference identifies an interface in the
computational viewpoint.

 2.3.1.  Objects

An ODP object is represented by a C++ object
defined by a class which publicly inherits from the
odp_Object base class:

class Bank : public odp_Object

{

friend class Account ;

friend class Customer ;

friend class Branch ;

friend class Manager ;

friend BankManager Bank_factory () ;

private:

Pence  cash ;

 Bank () : cash(0) {}

BankManager body () ;

};

The object class declares its factory and interface
classes as friends, to allow them to access the private
object data. The object has no public methods or
data, as construction is via the factory and all further
access via the interfaces.

 2.3.2.  Operations, interfaces and signatures

An ODP interface is characterised by a signature
and some behaviour. A signature corresponds to the
interface type, which in turn defines a set of
operations, and the ODP interface itself provides a
particular implementation of those operations.

A signature is represented by a C++ abstract
class definition which publicly inherits the base
odp_Signature class. The operations are defined as
pure virtual methods:
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class BankManager_Sig :

    public odp_Signature

{

public:

    class Termination :

        public odp_NamedTermination {} ;

    class invalidPin  :

        public Termination {} ;

    virtual Pence balance(BankPin mpin)

        throw (invalidPin,

        odp_EngineeringTermination) = 0 ;

};

The ODP interface is then represented by a C++
object defined by a class which publicly inherits
from both the interface’s signature and an
odp_Interface class template, which provides
implementation that is shared amongst all interfaces.
The interface’s public methods must implement the
virtual methods defined by its signature:

class Manager : public BankManager_Sig,

    public odp_Interface<Bank>

{

friend class Bank ;

private:

BankPin  pin ;

Manager (Bank * obj) :

      odp_Interface<Bank>(obj), pin(0) {}

public:

Pence balance(BankPin mpin) ;

};

The interface inherits from odp_Interface a
pointer to the object on which it is an interface. This
pointer can be used by operations in the interface to
access the shared data in the object, and is initialised
by the odp_Interface constructor.

 2.3.3.  Terminations

A named termination is represented by a C++
exception of the same name. The exception name is
declared in the scope of the signature declaration,
and all of a named termination’s results are passed as
arguments of its exception. In the signature example
above, invalidPin is a named termination.

The anonymous termination is handled
differently from named terminations. The last result
of an operation’s anonymous termination is passed
as the result of the C++ method implementing the
operation. Any preceding results are returned via
C++ reference (&) arguments added to the end of the
method’s argument list.

 2.3.4.  Invocations and references

An operation in a (local or remote) interface is
always invoked via an invocation reference. These

are implemented as typed smart pointers to an
(abstract) signature. This pointer is generated from
the odp_InvocationRef template class like so:

typedef

  odp_InvocationRef<BankManager_Sig>

  BankManager ;

The class that the smart pointer actually points to
can be either a local interface or a client stub for a
remote interface. The C++ virtual function calling
mechanism then provides complete access
transparency between local and remote invocations.

Primitive types in invocations are mapped onto
their C++ equivalents. They are accessed directly
and passed as arguments by value. Constructed types
and interfaces are always accessed and passed as
arguments via smart pointers. Constructed types are
passed by value, interfaces are passed by reference.

Local garbage collection of interfaces, objects
and constructed types is done by reference counting
and is implemented via the smart pointers.

 2.4.  Target platform

To exploit the full range of QoS controls offered
by DIMMA, the DIMMA nucleus must be hosted on
an operating system able to provide the necessary
soft real-time facilities. DIMMA makes use of Posix
interfaces [[1]] to access OS resources; in particular
the Posix threads interface is relied upon to support
control of multi-tasking. The current version of
DIMMA has been tested and released on Solaris 2.5.

 3.  Communications Framework

The purpose of the communications framework is
to simplify the production of new protocols by
encouraging and facilitating reuse, through providing
general components and standard interfaces, and
through providing a uniform approach to resourcing
for quality of service.

The communications framework comprises a set
of generic interfaces and components, and informal
guidelines pertaining to their use.

Due to the requirement to support many diverse
protocols, e.g., connection oriented, connectionless,
RPC, flow, etc., the protocol framework cannot be
too prescriptive and aims instead to provide a
minimal number of generally useful “building
blocks”. Likewise, many of the compositional
constructs are too informal to express in a strongly
typed language like C++ and instead are presented as
a “cook book” of guidelines.

The framework considers a protocol to comprise
a set of modules, each supporting a layer of protocol.
The definition of what constitutes a protocol layer is
not a formal one: it may be anything that is



DIMMA – A Multi-Media ORB Middleware ’98 – Full Technical Paper Primary Contact: Matthew Faupel

5

reasonably self-contained in terms of the framework
interfaces. That said, a protocol layer typically has at
least one of the following characteristics:

- performs message multiplexing

- dispatches messages to stubs

- interfaces with OS network facilities

To this end, a module (providing a layer of
protocol) will normally be associated with specific
message header information, i.e., it will typically add
a header on message transmission and remove it on
receipt. This header is used to hold addressing
information for message multiplexing.

Modules create channels in response to requests
from their associated protocol and these act as
conduits for message transmission and reception.
Like the modules of a protocol, channels are also
layered, forming a channel “stack”. In other words,
modules are the static representation of available
protocol layers, while channels are the objects
created dynamically when a binding is set up using
that protocol, which manage the resources associated
with the binding.

Client call and server reply messages are
presented to the top channel and go down the
channel stack until they reach the lowest level
channel (called an anchor channel) which passes
them to the operating system network interface.

The processing of incoming messages is not
necessarily symmetric with that of transmission.
Messages arriving from the network are processed
by low level channels but cannot necessarily be
passed directly to the next higher level channel, e.g.,
when there is channel multiplexing. In this case, the
message is passed by the channel to the next higher
level module, which interprets the associated header
information to identify the next higher level channel
to which the message is then passed. In this way, the
message makes it way up through the protocol,
alternating between channel and module, until it
reaches the highest channel where it is dispatched to
the stub or server object.

The framework allows for optional message
concurrency on a channel through the concept of a
session layer. This may be regarded as a layer of
multiplexing between the highest level channel and
the stub. Session objects are assigned for each
concurrent flow or invocation on a stub.  They act as
state machines, preserving any information required
by each caller and linking the calling threads to the
messages that are passing through the channel to
carry out their operations.

 4.  Flow Support

 4.1.  Overview

There is a class of applications for which the
operational RPC mechanism is inappropriate. These
applications deal naturally in continuous flows of
information rather than discrete request/reply
exchanges. Examples include the flow of audio or
video information in a multimedia application, or the
continuous flow of periodic sensor readings in a
process control application.

A flow has a distinct type and an associated
direction with respect to the binding, e.g., video
information might flow out of a producer binding
associated with a camera and into a consumer
binding associated with a TV monitor on which the
output of the camera is to be displayed. It follows
that flow interface types exist in pairs that are related
by the reversal of the flow.

The type of flow is characterised by the set of
possible frames that it can support. For example, a
video flow might be able to carry both MPEG and
JPEG frames.

DIMMA extends the functionality of a basic
ORB in three ways in order to support flows:

1. The ODP library provides a means to
represent and manipulate flows

2. The CORBA IDL compiler understands a
new type of flow interface, mapping them on
to the appropriate ODP library facilities

3. An example flow protocol is provided to
demonstrate the use of flows.

Additionally, the use of flow interfaces generally
requires the ability to specify QoS parameters; the
support for this is dealt with in more detail in
subsequent sections.

 4.2.  Flow Interfaces in IDL

The IDL extension to support flows proved very
simple from the user’s point of view: all that is
changed is that the keyword “flow” is used instead of
“interface” in CORBA IDL. It actually required
more changes behind the scenes though to support
this, such as checks in the IDL compiler to ensure
that the operations within the flow were legal (e.g.,
no inout parameters).

A flow interface is modelled in Jet IDL in terms
of one-way operations and will result in the
generation of both producer and consumer
components, in an analogous way to client and
server components generated from an operational
interface. The main difference is that the operations
are one-way and data is unidirectional with respect
to the binding. The operations within a flow
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interface correspond to frame types and these are
further described by the parameters of the operation.

For example, a simple video flow consisting of a
single frame type (Frame1) consisting of a frame
number and the video image data (image), could be
described in IDL as follows:

flow Video

{

    void Frame1( in long frame_no,

        in string image );

};

Note that both parameters are described as input (in)
and that the operation returns no result (void type).

The ODP standard defines an additional concept
called stream which is described as a set of
unidirectional flows, e.g., a TV stream might be
considered a logical entity consisting of an audio and
video flow. DIMMA does not implement the stream
concept directly, although in principal, a stream
binding could be constructed by an application from
a set of flow bindings.

Although flows appear to be similar to
operational interfaces in IDL, they are distinct
entities and a flow cannot inherit from an interface,
nor can an interface inherit from a flow.

 4.3.  Example protocol

The protocol that was added to demonstrate
flows within DIMMA is called ANSA Flow. It is a
lightweight but fully functional multicast protocol
based on RTP [[4]] over UDP. Note though that it is
not a full implementation of all possible RTP packet
types; just the parts of it needed to support ANSA
Flow’s proprietary packets.

 5.  Resource Management

 5.1.  Overview

DIMMA provides for application control and
management of resources through the use of QoS
parameters. All resources needed by an application
affect QoS, but many are managed by the OS and/or
the network, and the application has only limited
influence over them. This constrains what can be
achieved in terms of guaranteeing QoS.

In practice, with current OSs, an ORB may
control sharing within a capsule (process), e.g., the
number of tasks, or how channels are multiplexed. It
may exert some influence over inter-capsule
behaviour, e.g., via task priorities. To do any better
than that requires a specialist resource-aware OS and
a resource-aware network protocol.

DIMMA QoS parameters are specified in terms
of attributes such as buffers, threads, communication

endpoints and so on. Mapping between application
specific QoS parameters (e.g., jitter, frame rate, etc.)
and these “engineering” parameters remains the
responsibility of the application.

The DIMMA QoS infrastructure allows the
application explicit control over the resource
allocation policy to be used within a given channel.
For example, buffer allocation may be defined to be
“on demand”, or a set of buffers may be preallocated
for the channel’s exclusive use. A few examples are
given to clarify the possibilities.

Objects sharing channel Plus multiple Invocations

 Figure 5-a: Possible channel sharing policies

Figure 5-a illustrates two possible policies for
multiplexing objects to channels. The left-hand
diagram shows multiple objects sharing a single
channel. The right-hand diagram shows the same,
with the addition of session objects maintaining state
information to allow multiple invocations. The
channels themselves may be subdivided into multiple
layers, each with further multiplexing.

Shared read/demux Thread

Invocation concurrency

 Figure 5-b: Possible thread sharing policies

Channels may share a read/demultiplex thread.
This is shown on the left-hand side of Figure 5-b.
The channel itself may be shared between multiple
application-level threads as shown on the right-hand
side. One extreme (not shown) is one thread per
capsule, i.e., the single threaded case.

Figure 5-c gives an example of two possible
resourcing policies for a complete end-to-end
channel.
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 Figure 5-c: Two channel resourcing strategies

The left-hand diagram gives a typical policy for
“default” quality of service. The calling threads
share a common channel, and at the server side,
there is only a single listener thread which, on
receipt of an incoming call, causes a new thread to
be created to handle the call and then passes control
to that thread (which is destroyed on call
completion). All resources are allocated on demand
through factories and deleted when finished with.

The right-hand diagram shows a policy for high-
performance quality of service. The client has a
dedicated channel so there is no need to maintain
session information, and there is no context switch
on calling; the thread waits for the response. At the
server side, when a call is received, the receiving
thread calls the server object and returns the result,
so again there is no context switch. While the call is
being executed, a new thread is drawn from a pool
ready for the next receive. When the call has been
completed, that thread is returned to the pool. All
resources used by the configuration are drawn from
pre-allocated pools and returned when finished with.

 5.2.  Generic resource framework

The aim of the components of the DIMMA
resource framework is to provide a generic way of
controlling all resources while allowing different
specific resource control policies to be implemented.
To achieve this, all resources are allocated through a
generic Allocator interface:

template <class AResource>

class ResourceAllocator

{

public:

    virtual AResource * Allocate() = 0;

    virtual ~ResourceAllocator() {};

};

Behind this interface, different policies can be
implemented, e.g., “create a new resource each time
it is needed” (factories), or “take a pre-allocated
resource from a pool” (pools). The resources
themselves implement a generic Resource interface
to allow them to be freed once finished with:

class Resource : public Queueable

{

public:

    Resource() {}

    virtual ~Resource() {}

virtual void Free() {}

};

Buffers, sessions and threads can all be
controlled via this framework, and different policies
can be put together for different parts of a protocol
to form a wide range of overall resourcing policies.
Buffer and session allocation is straight-forward;
threading requires a little more explanation.

 5.3.  Threading

DIMMA offers both single-threaded or multi-
threaded operation, switchable at compile time
through a configuration flag. The latter is
implemented internally using Posix threads; the
former is made available to produce a high-
performance executable, or for platforms that don’t
support multi-threading. Since CORBA does not
define any standards for multi-threaded operation,
DIMMA provides its own interfaces to control
threading.

The DIMMA model of threading provides two
abstractions: Threads and Tasks. Threads are a unit
of potential concurrency and are scheduled over
tasks by DIMMA. Tasks represent a unit of real
concurrency and are implemented as Posix threads
[[1]] (bound to a lightweight process on Solaris).
Tasks are scheduled pre-emptively by the underlying
operating system and it is the applications
responsibility to ensure that access to data shared
between tasks is properly synchronised.

Three threading policies are provided with
DIMMA; these control what is done when there is a
possibility of a context-switch within the protocol.
The “null task” policy means that the calling task
carries on executing, thus avoiding a context switch.
The “normal task” policy means that control is
handed over to another task and the calling task
returns. The “scheduled thread” policy allows a
specified number of prioritised threads to be
scheduled over a number of tasks. The threads are
added to a prioritised queue and the first on the
queue is executed as and when a task becomes
available.

 5.3.1.  Client threading

Client objects directly control their concurrency
by creating tasks appropriately. The interface to
DIMMA tasking borrows heavily from Java [[5]]. A
DIMMA task executes an instance of a Runnable
interface, the latter being an abstract class from
which a concrete class should inherit. The Runnable
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interface defines a single method called Run which
will be the entrypoint for the task. A simple example
of its use is as follows:

#include <Runnable.hh>

class MyRunnable : public Runnable

{

  Runnable::status_t Run();

  ...

};

main()

{

  Runnable * runnable = new MyRunnable;

  Task * myTask = new Task;

  myTask->Install( runnable );

  myTask->Start();

  (void) myTask->Join();

  delete myTask;

}

 5.3.2.  Server threading

A server object shares the same engineering for
threading as that provided for client objects but the
use is typically different. The reason for the
difference is that server interfaces are normally
upcalled by a nucleus task, rather than being
executed by a task provided by the server object. It
is possible to specify whether the operation should
execute in the nucleus task, a new server task or
whether a new thread should be queued for
subsequent execution by an associated task.

 5.4.  Specifying resource requirements

In order to provide any kind of bounded QoS, it
must be possible for an application to communicate
its requirement to the underlying infrastructure, both
distribution layer and host operating system.

DIMMA supports a resource reservation model
and allocates resources according to the specified
QoS when an application establishes a binding, e.g.,
when a client binds to a server. Resources are
reserved for all parts of the underlying channel, e.g.,
communications resources, buffers, tasks, etc. The
binding model used by DIMMA to support the
specification of QoS is dealt with in the next section.

 6.  Binding

 6.1.  Overview

With standard RPC systems, binding is done
implicitly, i.e., when a remote reference is first used,
a binder sets up an appropriate communications
channel to it. This is the model adopted by the
majority of ORBs and provides maximum
transparency to the application in terms of hiding
irrelevant engineering details. However, there is a

trade-off: transparency implies little or no control
over the QoS of the binding that is established.

When quality of service can be specified, binding
must be done explicitly (because the binder will not
know which of a range of possible quality levels is
wanted); this requires extra support from the binding
apparatus. Although explicit specification of Quality
of Service parameters can be provided for RPC
protocols as well, it is essential for flow protocols.
QoS is specified on a per-connection basis so as to
allow the same service to be accessed with different
levels of quality, e.g., a video source could be
provided at different levels of quality over different
bandwidth connections.

DIMMA supports both implicit and explicit
binding models.

 6.2.  Implicit binding

Implicit binding in DIMMA is provided by
Binder objects which implement a predefined
binding policy, and make use of default QoS
parameters. In keeping with the DIMMA component
philosophy, the implicit binders may be replaced by
application specific implicit binders which
implement a different binding policy appropriate to
the application.

 6.3.  Explicit binding

To meet the needs of multi-media and real-time
applications, DIMMA provides a model of explicit
binding. Explicit binding allows both the QoS and
the time of binding to be controlled and hence allows
resource reservation. The downside is the increased
complexity of the mechanism required to establish
the binding.

An explicit binding is accomplished in several
stages and is bootstrapped using the implicit binding
mechanism. An application wishing to offer a service
must do so via a binding manager which offers its
own interface as a proxy for the real service. The
binding manager is responsible for placing each
party’s local explicit binder in communication with
the other. These in turn will set up the local bindings
with the specified QoS and establish the network
connection. This procedure is illustrated in Figure 6-
a.

Local
endpoint
binder

Local
endpoint
binder

Server’s
binding

manager

Server
host

Client
host

Client Service

1

2

3
4 567

8
9

 Figure 6-a: Explicit binding
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1. The service interface is exported via the
server’s binding manager.

2. When the service interface reference is
exported (e.g., as a call parameter or via a
trader), a reference to the server’s binding
manager interface is passed instead.

3. The client, on binding to the service, calls the
binding manager passing it the parameters for
the binding (e.g., QoS requirements).

4. The binding manager hands off the binding
request to the server’s local endpoint binder,
which creates a service endpoint and…

5. …returns the details to the binding manager,
which in turn…

6. …returns the details to the client.

7. The client then passes the remote endpoint
details plus other binding parameters to its
local endpoint binder, which sets up the
binding and…

8. …returns an invocation reference to the
client…

9. …which the client then uses to call the
service.

All these machinations though are transparent to
the client application, which simply imports what it
believes to be the interface reference for the service
and binds to it.

 6.4.  Binding and resource control

The protocol-specific QoS specification provided
during explicit binding is passed to the top level
protocol binder at each end of the binding.  In the
usual case where the protocol is made up of a
number of layers, the QoS specification for the top
level layer will contain a pointer to the QoS for the
next layer down, and so on.  When creating the
channel for the binding, each layer extracts the QoS
for the next layer down and then passes that to a
create channel request on the lower layer recursively
until the bottom layer is reached.  The bottom layer
extracts the resourcing information from the QoS
parameters it is given to create its channel and then
returns that to the next layer up, which repeats the
process until the top layer is reached again.  Thus
each layer resources its part of the channel
appropriately.

To give a concrete example, QoS for the IIOP
protocol is specified using objects of the following
classes (access and constructor methods have been
removed to save space):

class TCPQoS

{

    ...

protected:

    E_ReadingTaskPolicy f_policy;

    int f_receiveSize;

    int f_transmitSize;

    Buffer::Allocator* f_bufferAllocator;

};

class AcceptorTCPQoS : public TCPQoS

{

    ...

private:

    Threading::Allocator*

        f_taskAllocator;

    IOChannelTCP::Allocator*

        f_channelAllocator;

};

class IIOPQoS : public GenericQoS

{

    ...

private:

    TCPQoS* f_TCPQoS;

    Buffer::Allocator*

        f_writeBufferAllocator;

};

class ClientIIOPQoS : public IIOPQoS

{

    ...

private:

    ClientSession::Allocator*

        f_clientSessionAllocator;

};

class ServerIIOPQoS : public IIOPQoS

{

    ...

private:

    Threading::Allocator*

        f_TCPReadingTaskAllocator;

    IOChannelTCP::Allocator*

        f_IOChannelTCPAllocator;

    Threading::Allocator*

        f_serverSessionAllocator;

};

Note first that the IIOP QoS specification
contains a pointer to a TCP QoS specification, and
secondly that there is a variable for each possible
policy option within the protocol, e.g., whether to
allocate buffers from a pool or a factory, what the
tasking policy should be and so on.
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When the IIOP binder is requested to create a
channel, it extracts the TCP QoS from the IIOP QoS
it has been given and then passes it to the TCP
module’s create channel method.  That being the
lowest layer, it creates the TCP channel and passes it
back to the IIOP layer, which then uses it and the
IIOP-specific QoS to create an IIOP channel.

 6.5.  Implications for network endpoints

Supporting Quality of Service affects how
network endpoints are used. For a standard RPC
system with implicit binding, all connections to a
service can be multiplexed through the same network
endpoint because they all have the same (default)
quality of service. See Figure 6-b.

Client ClientServer

 Figure 6-b: Standard ORB sharing a single
network endpoint

With an ORB such as DIMMA, which supports
access to the same service with different levels of
quality of service, a server must be able to offer
multiple network endpoints in order to support the
different QoS (Figure 6-c).

Client ClientServer

Low QoS High QoS

 Figure 6-c: Multiple endpoints for varying QoS

Although supporting QoS requires support for
multiple network endpoints for the same service, this
extra level of complexity is masked within the
binding mechanism outlined above, and all the
application ever sees is a standard invocation
reference that encapsulates the details necessary to
distinguish between multiple possible endpoints.

 6.6.  Implications for binders

Supporting explicit specification of QoS has a
number of implications – there is a trade-off between
the amount of control allowed to the application over

QoS and the transparency to the application of the
mechanisms being used.

As resource usage and thus QoS is specific to
each protocol, a binder can no longer be generic.
This requires the application to understand the QoS
details of each protocol it uses, i.e., it too can no
longer be generic. It also affects the dynamic loading
of protocols – if QoS is protocol specific, how do we
determine and select from the possibilities offered by
a dynamically loaded protocol?

This problem of lack of transparency can be
mitigated by defining a more generic sort of QoS
and then having each protocol be able to map from
the generic QoS to its own specific QoS.

DIMMA has support for this concept of generic
QoS, which is called engineering QoS. It is at a
higher level than protocol specific QoS, though it
does not attempt to provide very high level
“application” QoS. It is the responsibility of the
implementer of a protocol to map this engineering
QoS into terms that are applicable to the protocol.
The two protocols supplied with DIMMA, IIOP and
ANSA Flow, both implement this mapping.

The options currently configurable with
engineering QoS are:

- Processing concurrency, which defines the
maximum number of tasks to run
concurrently.  A special “null task” value
indicates that the message reading task is to
process the operation.

- Message concurrency, which defines the
maximum number of messages that can be
simultaneously processed (and hence the size
of the buffer pool).  If this is greater than
processing concurrency, message processing
is scheduled over the available tasks as
described earlier in section 5.3.

- Buffer size, which defines the size of the
buffers in the pool and hence the maximum
size of a message.

- Channel policy, which defines whether or not
channels are multiplexed on transport
connections.

By having this engineering QoS it allows
application programmers to write applications that
control QoS without having to hard-code decisions
about protocol use throughout the program. It also
means that the choice of which protocol to use can
be deferred until runtime, allowing dynamically
loaded protocols (that were not necessarily known
about at design time) to be used.
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 7.  Performance

 7.1.  Improvements

For DIMMA 2.01 we undertook a performance
analysis and then tuned the system based on the
results. These are the major performance
improvements that we implemented compared to
earlier systems:

- Marshalling

 The standard iostream libraries that were used
for marshalling in DIMMA 2.0 carry out
costly mutex locking. We wrote our own
replacement routines which eliminated this.

 We used C++ templates for decisions on
marshalling, e.g. byte-ordering and float
representation, which removed some
frequently executed runtime tests.

- IIOP

 We removed redundant marshalling and
unmarshalling, and provided a QoS
configuration that doesn’t change thread in
the client session thus avoiding a costly
context switch.

- TCP

 Reading a TCP message requires reading a
header containing a length and then reading
the remainder of the message. This was
previously done using two recv calls, each
of which executes costly locking code. This
was replaced with a single recv call that just
tries to read as much as possible in one go
into a buffer, i.e., it usually reads both the
header and the trailing message in one go.

 7.2.  Results

There were large performance gains in DIMMA
2.01. The default QoS configuration was 50% faster
than DIMMA 2.0, and is comparable with
commercial ORBs. The high-performance QoS
configuration is 2-3 times faster than commercial
ORBs. Descriptions of the default and high-
performance QoS configurations are given earlier in
Figure 5-c.

The tests were carried out using 5,000 iterations
of a remote call using IIOP on a 167MHz Sparc
Ultra 1 with 128Mb of memory. The first two tests
used CORBA oneway operations; the second two
used standard operations. The “no param” tests used
an operation with no parameters, the “null string”
tests used an operation with a single string
parameter, which was passed a zero length string.
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 Figure 7-a: Performance results

- Orbix 2.1 - a popular commercial CORBA
ORB from Iona

- MT no QoS - multi-threaded build, default
QoS configuration

- ST no QoS - single-threaded build, default
QoS configuration

- MT full QoS - multi-threaded build, high-
performance QoS

- ST full QoS - single-threaded build, high-
performance QoS
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