
Copyright © 1999 APM Limited on behalf of sponsors for the time being of the ANSA Programme

$30
POSEIDON HOUSE • CASTLE PARK • CAMBRIDGE CB3 0RD UNITED KINGDOM

+44 1223 515010 • Fax +44 1223 359779 • Email: apm@ansa.co.uk • URL: http://www.ansa.co.uk

FlexiNet

Java Distribution and Deployment

Matthew Faupel

Abstract

By virtue of having an easily transportable, architecture-neutral representation, Java has simplified the
task of writing distributed and distributable applications. Nevertheless, to date the exploitation of this
possibility has mostly been limited to writing “applets”. This paper examines the architectures that have
been proposed for more complex distributed and distributable computing systems that use Java and
the technologies being developed to support these systems. It then identifies niches within these
architectures that still require further research and development.

Distribution:
Supersedes:
Superseded by:

APM.2038.02 Approved 09 October 1997
Technical Report

Java Distribution and Deployment

Table of Contents

1 Introduction 1

2 Java Deployment Architectures 2

�����2YHUYLHZ �

�����-DYD�$SSOHWV�RQ�WKH�:HE �

�����-DYD�ZLWKLQ�WKH�20$ �

�����,%0·V�&RPSRQHQW�%URNHU �

�����2UDFOH�1&$ �

�����0DULPED �

�����0RELOH�DJHQW�V\VWHPV �

3 Java Middleware Technologies 10

�����-DYD�50, ��

�����&25%$�EDVHG�V\VWHPV ��

�����$JHQW�V\VWHPV ��

�����2EMHFW6SDFH�9R\DJHU ��

�����0DULPED ��

�����0LFURVRIW·V�$SSOLFDWLRQ�&KDQQHOV ��

�����/RWXV�1RWHV ��

�����-DYD�%HDQV ��

�����-(&) ��

4 Analysis 14

�����7KH�6WDWH�RI�WKH�$UW ��

�����7KH�0LVVLQJ�3LHFHV ��
��������$Q�$UFKLWHFWXUH�IRU�'\QDPLF�6\VWHPV ��
��������0RGXODULW\�DQG�7UDQVSDUHQF\ ��
��������$�3ROLF\�)UDPHZRUN�IRU�'\QDPLF�6\VWHPV ��
��������$�/HJDO�DQG�&RPPHUFLDO�)UDPHZRUN ��

5 Implications 16

�����7KH�)OH[LQHW�3URMHFW ��

�����7KH�'LJLWLYLW\�&$*(�3URGXFW�/LQH ��

29-Oct-97 Java Distribution and Deployment 1

1 Introduction

The Java language, its execution environment, and the suite of core APIs and classes
being built for it together provide facilities that recommend it for use in implementing
distributed systems. Its ability for the same code to be run on different platforms, its
safety features and its support, through the class loader system, for dynamically
incorporating new code makes it particularly suitable for systems whose behaviour and
configuration are expected to change over time.

Nevertheless, to date there has been little exploitation of these qualities beyond the
relatively trivial use of “applets” to spice up web page content. This is due partly to the
relatively short time since the language was introduced in a stable form and partly to the
lack of infrastructure components to support more complex distributed applications.
This lack is being addressed by industrial vendors who are developing architectures for
distributed systems based on or incorporating Java, and providing components within
those architectures.

This paper summarises the architectures and technologies related to distributed
computing in Java that have been announced so far, concentrating on offerings from
commercial organisations. It concludes with an analysis of the state of the market and an
examination of the issues and components that still require further research and
development. It has been prepared as part of the ANSA “Flexinet” project, which is
investigating the issues surrounding wide-scale deployment of component-based
distributed systems. It will be updated as further relevant industry offerings are
identified.

Being in part a survey of current commercial offerings, this paper makes reference to a
number of trademarks. The ownership of all such trademarks by their respective
organisations is hereby acknowledged.

2 Java Distribution and Deployment 29-Oct-97

2 Java Deployment Architectures

2.1 Overview

An architecture is a conformance framework within which a solution is designed. It
defines mandatory and optional components, specifies their interactions to some degree
and provides rules for building solutions that conform to the architecture. To date few
architectures have been developed that present a coherent and well thought out
framework for the partitioning and deployment of distributed applications. Most appear
to be post-hoc rationalisations of existing or future product ideas; a notable exception is
the OMG’s Object Management Architecture.

This chapter highlights a selection of the more prominent architectures that have been put
forward, with the focus being on commercially supported frameworks for employing
Java in a distributed fashion.

2.2 Java Applets on the Web

This is the architecture most commonly used at present for distributed systems using
Java. It is presented for comparison with the subsequent architectures in this chapter.

Figure 0.1. Java applet architecture

F
I
R
E

W
A
L
L

HTML
Pages

Java
Classes

Java
Applet

JVM

Browser

Web Server

HTTP

Briefly, the browser downloads an HTML page from a web server which contains a
reference to a Java class that represents the applet. This causes the applet class to be
fetched by the browser and executed by its Java Virtual Machine; this in turn will fetch
from the server any further classes that the main applet class makes use of but which are
not already available to the browser.

29-Oct-97 Java Distribution and Deployment 3

The Java applet is generally a single self-contained entity; it can communicate back on
the original web server, but otherwise it has no other interactions with anything either on
its own host or on other machines elsewhere. This is a limitation imposed by the current
JVM applet security policy [Sun97b].

The firewall is optional but usual if the server is accessible from outside of its own
administrative region. Firewall policies commonly limit allowable incoming connections
to the server, and connecting to arbitrary ports is generally forbidden. This results in any
communication back from the applet usually having to be done using HTTP, possibly
aided by CGI scripts at the server side. With the advent of JDK 1.1 [Sun97c], this
communication can be done using Java RMI [Sun97a] to invoke methods on Java objects
running on the web server.

RMI can tunnel over HTTP if required, transparent to the applet. This is done using the
following algorithm: attempt to contact host using a direct connection to the remote RMI
server; if this fails, attempt to contact the host on the same port, but wrapping the RMI
invocation in an HTTP POST request; if that fails, send the same POST request to port
80 on the remote host. This strategy should enable requests to pass through firewalls at
either end which limit traffic to HTTP only, or more strictly to HTTP on a well-known
port only. At the host end, HTTP requests received directly are automatically unpacked
by RMI’s default server socket implementation, while requests to port 80 are forwarded
to the RMI server by a CGI script supplied with the RMI package. This does rather
defeat the object of having the firewall in the first place though!

2.3 Java within the OMA

OMG’s Object Management Architecture (OMA) is an architecture for object-oriented
distributed computing that has been under development since 1989 [OMG97a]. At the
heart of the architecture is the concept of Object Request Brokers (ORBs) that provide
location transparency for the objects. The specification of these ORBs and their
associated services is known as the Common ORB Architecture (CORBA) [OMG97b].
It was designed from the outset to be language neutral, hence fitting Java into it is a
natural step.

Figure 0.2. Example CORBA system

ORB

ORB

ORB

IIOP

Objects implemented in:

Java

Smalltalk

C

C++

4 Java Distribution and Deployment 29-Oct-97

The interfaces of CORBA objects are defined in a neutral Interface Definition Language
(IDL). CORBA objects can written in any language for which a mapping has been
defined from IDL to that language and which has an ORB that supports that language.
The IDL to Java language mapping was approved by the OMG in July 1997 [OMG97c],
and there are already several Java ORBs on the market (e.g. Visigenic’s VisiBroker,
Sun’s Joe). The OMG has also issued RFPs for mapping from Java to IDL [OMG97d]
and for supporting pass-by-value semantics for object parameters in operations
[OMG96]. These together would then allow a distributed application to be written
entirely in Java without need for separate IDL definitions of the objects involved.

The OMA allows ORBs to intercommunicate using any mutually understood protocol,
however it requires all ORBs to support the Internet Inter-ORB Protocol (IIOP), which in
practice is often the only protocol provided. This presents a problem when firewalls are
introduced into the picture as IIOP allocates TCP/IP ports on the fly for inter-object
communication, rather than using a single well-known port; firewall configurations
commonly disallow arbitrary port usage in this manner, both in passing out of the client
domain and passing into the server domain.

Two solutions have been developed to solve this problem: first, HTTP tunnelling, i.e. the
client wraps IIOP messages as HTTP POST requests to be unwrapped by a server at the
far end that supports this, and secondly IIOP-aware firewalls, which understand the IIOP
protocol well enough to be able to filter messages and act as a proxy for objects that want
to be visible outside the firewall. The latter approach is superior in performance,
flexibility and security, but does require the client domain to permit clients to open a
connection to a non-standard port, which is sometimes disallowed, hence leaving
tunnelling as the only viable alternative. Visigenic’s VisiBroker ORB [Visigenic97]
supports HTTP tunnelling, in combination with their IIOP-GateKeeper at the server end,
as does Sun’s Joe and NEO [Sun97d]. Iona’s Wonderwall is the only current example of
an IIOP-aware firewall. It also supports tunnelling in combination with their OrbixWeb
client [Iona97].

At present, the OMA provides standards that cover ORB functionality and
interoperability, mapping of IDL to specific languages, and supporting services such as
naming, trading, transactions and security. It is however purely an architecture for
supporting the interworking of already distributed objects; it doesn’t standardise how
those objects are distributed in the first place, nor does it place any constraints on how
the objects are organised to make up applications. Steps are being taken in this direction
through the issuing of RFPs, e.g. for standardised components [OMG97e], and an agent
framework [OMG95], but as yet no update to the architecture has been presented that
links these into a coherent whole.

2.4 IBM’s Component Broker

IBM have produced a development, execution and management framework based on the
CORBA model for distributed computing called Component Broker [IBM97a]. This was
released in beta form in May 1997 and is due for formal release in September 1997.

29-Oct-97 Java Distribution and Deployment 5

Figure 0.3. IBM’s Component Broker Architecture

Server group

Server ServerClient Client

CBC/SM

CB

B
B

B

B

B

B

A

A

S
S

C

C

Control of distribution

M
on

ito
rin

g
an

d
co

nt
ro

l o
f s

er
ve

rs

Application Package

The development part of Component Broker supports the modelling of an enterprise as a
collection of Business (B) and Composed Business (CB) objects, which interact with
clients (C) supported by Application (A) objects, and hold persistent state in State (S)
objects. Having developed this model, there is then support for implementing it as a set
of CORBA objects (i.e. implementable in any supported language, including Java), with
client views being provided via Java applets or ActiveX technology, the whole being
known as an Application Package. A full set of CORBA services and facilities (e.g.
naming, security, transactions) are provided for use by the applications, as are facilities
for helping to interface with legacy systems.

The execution and management facets of Component Broker are handled by an execution
environment called Component Broker Connector (CBC). This consists of a central
management system, CBC Systems Management (CBC/SM), and a runtime component
installed on all hosts within the system (CBC/SM Agent) which deals with the
deployment, monitoring and control functions on the host.

An administrative model is held centrally by the CBC/SM, which defines the allocation
of objects to servers and server groups and shows management boundaries. Policy
decisions, e.g. for caching, replication etc., are made based on this model. Installation,
removal and version control of application packages on servers and clients are also
handled centrally, as is start-up and shutdown of the servers and applications. Finally,
performance and problem monitoring is carried out by the CBC/SM.

Once an application package has been installed by the CBC/SM, objects are instantiated
on demand when a client requires them. They are partitioned based on management

6 Java Distribution and Deployment 29-Oct-97

policy and access requirements, with each partition under control of an application
adapter. These control object access to resources including mapping to databases, legacy
systems, and so on. A transaction manager is provided that concentrates client IIOP
requests and directs them to the appropriate application adapter, and can (as directed by
the centrally defined policy) dynamically create and destroy application adapters for
load-balancing purposes.

2.5 Oracle NCA

The Oracle Network Computing Architecture (NCA) is Oracle’s strategy for drawing
together a number of disparate strands in distributed computing (CORBA, the web,
client/server databases etc.) and merging them into a coherent framework for developing
distributed applications.

Figure 0.4. Oracle’s Network Computing Architecture (NCA)

Inter-Cartridge Exchange (ICX)

Client
Universal

Application
Server

Database

Universal
Server

HTTP, IIOP, SQL*NET etc.

Client cartridges
Application server

 cartridges Data cartridges

The architecture, as outlined in Oracle’s white paper [Oracle96a] has three key items:

♦ clients, application servers (an extension of the web server concept) and database
servers that are extensible through “pluggable” objects fitting standard interfaces

♦ cartridges, which are the “pluggable” objects that provide the extensions

♦ A software bus, called the Inter-Cartridge Exchange (ICX) over which the
cartridges can communicate with each other.

The cartridges are managed objects, whose interfaces are defined using CORBA IDL,
and which conform to a basic interface that allows them to be installed, activated and
used (i.e. plugged in). The clients and servers communicate with each other using
whatever protocols are appropriate (IIOP, HTTP, SQL*Net etc.); additionally, the
cartridges can communicate with each other using the ICX service, which in turn makes
use of IIOP and/or HTTP.

Various services are available to cartridges directly to provide support for administrative
functions such as installation, activation, monitoring and security. Additional services
are available via the ICX, e.g. support for transactions and access to local facilities such
as the user interface of a client or the database on a database server.

29-Oct-97 Java Distribution and Deployment 7

At the time of writing, little concrete information exists on the NCA beyond the white
paper. What documentation and software is available from Oracle does not seems to
conform to this vision yet. There is no publicly available formal specification of any of
the interfaces in IDL, and the published specification of the ICX software bus
[Oracle96b] shows it to be a C-based interface for communicating using raw HTTP.

2.6 Marimba

Marimba supplies Castanet, a product that tackles the problem of ensuring that end users
have the most up-to-date version of an application. Castanet handles Java code, HTML
pages and data files.

Figure 0.5. Marimba’s Castanet Architecture

F
I
R
E

W
A
L
L

Tuner

Transmitter

Repeater

Proxy

Plug-in

Class

File

Class

Class File

Channel

Channel

Plug-in

Class

File

Class

Class File

Channel

Channel

Guardian
Channel

data

Local cache

Castanet follows a broadcast metaphor, with transmitters, channels, tuners and repeaters.
Channels are the Java programs (or HTML pages) to be distributed, which are made
available on transmitters (and possibly replicated on repeaters). Tuners on client
machines tune in to a channel and (this is where the metaphor breaks down) based on a
knowledge of individual user preferences collected by the tuner and relayed to the
transmitter, the transmitter sends the incremental updates required for that tuner to have
the latest version of the application appropriate to that tuner [Marimba97].

Channels are constructed from a number of files; these files may be shared across
channels (e.g. class libraries), and the Castanet system can cope with different versions
of the same file in different channels if required. When a tuner requests an update for a
channel published by a transmitter it passes configuration information back to the
transmitter, including optional arbitrary profile and logging information generated by the
existing copy of the channel held locally by the tuner. Which files are returned to the
tuner are controlled by a simple policy defined by the publisher; this can be overridden
by the optional publisher-supplied plug-in that can interpret the profile information to
customise the choice of files returned.

Repeaters are used to spread the load in the system. A tuner will initially connect to the
main transmitter for a channel; this will then (transparent to the user) redirect the tuner to

8 Java Distribution and Deployment 29-Oct-97

use an appropriate repeater based on location and a round-robin allocation system.
Proxies are used to optimise the crossing of firewalls in the system. Once downloaded
by the tuner, channel Java applications are run within the Guardian. This is a Java
Virtual Machine which imposes security restrictions on the channels similar to that
imposed on applets by browsers, with the exception that channels are allowed limited
access to a reserved area in the local file system for recording persistent information.

At present there are no restrictions imposed on tuners downloading channels (other than
through limiting access to the transmitter itself) and no authentication is performed of the
users of the tuners. These facilities could be added now in an ad-hoc manner through use
of the plug-in system, and Marimba have promised some form of authentication
(probably a password based system) for the future.

Marimba have recently released a new product, UpdateNow, which applies this
deployment technology to applications written in languages other than Java. This can
also be used for distributing Java applications that can be run outside of the Guardian
sandbox (and thus have full access to system resources).

2.7 Mobile agent systems

A mobile agent is an object that can migrate itself between systems and that initiates this
migration autonomously. A number of systems have been released that support the
development and deployment of agents written in Java: Aglets [IBM97b], Odyssey
[GM97], Concordia [ME97], Kafka [Fujitsu97], and Mole [SBH96]. Although they
differ in details such as security policy, transport mechanism and class structure, they all
have a broadly similar architecture for distribution and execution, as shown below.

Figure 0.6. Generic Java mobile agent architecture

Java
Agent

Java
Agent

Agent
Services

JVM

Location
Server

OS

Agent-enabled
 host

Agent-enabled
 host

Agent-enabled
 host

Protocol for passing agents

29-Oct-97 Java Distribution and Deployment 9

An agent-enabled host has a server running within a Java Virtual Machine (JVM) that
acts as a logical “location” for running agents. The world of agents is made aware of the
location through a standard mechanism such as a trading service and then agents can be
sent (or send themselves) for execution at the location using an appropriate protocol for
passing the agent’s code and data. The location server is responsible for installing and
executing the agent within the JVM, and possibly also for locating and fetching any
subsidiary classes required by the agent. A well-defined set of agent services is usually
available. These provide facilities such as inter-agent communication, restricted access
to the host system to allow the agent to perform its task, and support for finding and
moving to other locations.

Security is clearly an issue in agent systems - hosts are executing foreign code while
clients are trusting objects that are owned by them and which carry their policy to be
examined, executed and passed around by remote systems. A sound model of trust is
required, as is supporting technology for identifying the ownership and rights of agents
and to prevent tampering or information leakage. No such model has yet been developed
(though Mitsubishi’s Concordia system appears to have taken steps in this direction), and
security in the publicly available agent systems is of a similar nature to that in browsers
at present, i.e. a highly restricted service is provided to agents originating from external
systems.

A more detailed evaluation of various commercially available agent systems can be
found in [APM97b].

10 Java Distribution and Deployment 29-Oct-97

3 Java Middleware Technologies

This chapter covers the available technology applicable to the distribution and
deployment of Java applications.

3.1 Java RMI

Java Remote Method Invocation (RMI) is Sun’s own Java remote procedure call system
[Sun97a]. In contrast to CORBA, it aims to be a lightweight system tailored for use in
Java only applications. It dispenses with some of the overheads that CORBA requires
for language neutrality such as having separate IDL definitions of interfaces, and exploits
certain Java-specific facilities to provide features unavailable at present in CORBA, e.g.
pass-by-value semantics for objects (including downloading the class code for the objects
if not already on the client) and dynamic download of stub code to clients.

The penalty the programmer pays in return for this increased simplicity and extended
functionality is the loss of access to the range of additional facilities that the CORBA
environment provides. RMI provides only a simple URL-based object naming service;
there is no equivalent to CORBA’s security and transaction services and the like.

The OMG are to standardise mapping from Java to IDL and support for pass-by-value
semantics, so the differences between CORBA and RMI will be less clear-cut.
Visigenic’s VisiBroker/Java ORB development environment already allows interface
definition in Java, pass-by-value semantics, class download and a naming service based
on URLs. Sun are tackling this from the opposite direction by adding the possibility of
using IIOP as the underlying transport for RMI instead of Sun’s proprietary Java Remote
Method Protocol (JRMP), along with defining the subset of the RMI interface that can be
used if this option is chosen. As support for pass-by-value etc. in IIOP is provided, this
subset will be widened.

Once the OMG standards are adopted, RMI’s competitive advantage could be reduced to
the fact that it is free with the JDK, and so will be likely to remain first choice for simple
inter-Java communication (such as from an applet back to its host).

3.2 CORBA-based systems

There are now a wide range of CORBA-compliant ORBs and associated development
systems that support the newly approved IDL to Java language mapping. A few systems
that go further are as follows. IBM’s ComponentBroker [IBM97a] adds distribution
management functionality as outlined in the previous chapter. Sun’s NEO [Sun97d]
ships with an all-Java ORB called Joe that can be downloaded into a browser to enable it

29-Oct-97 Java Distribution and Deployment 11

to make use of CORBA objects. OrbixWeb from Iona [Iona97] provides similar
facilities. Visigenic’s VisiBroker/Java [Visigenic97] (the ORB from which is
incorporated into Netscape’s Navigator 4.0) adds the facilities mentioned above to allow
the development of CORBA clients and servers entirely in Java, without use of IDL.

Cetus Links [Cetus97] provides a good summary of the ORBs currently available.

3.3 Agent systems

Aglets, Odyssey, Kafka, and Mole have been made available for public, non-commercial
use, with commercial exploitation being subject to a separate licence. Mitsubishi’s
Concordia is available for evaluation through application to Mitsubishi. Guideware
Corporation produces an SDK for writing Java agents [Guideware97]. None of these
systems has yet progressed beyond the “beta” stage.

3.4 ObjectSpace Voyager

Voyager from ObjectSpace [ObjectSpace97] combines the features of ORB-based
systems such as CORBA and RMI with those of agent systems. Voyager supports
transparent method invocation on remote objects but adds the twist that any object
enabled for remote access is also potentially mobile between Voyager systems. Agents
are simply a special case of mobile objects that understand how to move themselves.
Furthermore objects can be remotely instantiated on other Voyager systems, a technique
which can be used to perform some of the tasks agents are often used for without the
extra complexity of creating a local object and then transmitting it.

Various method invocation paradigms are supported (e.g. one-way, synchronous,
deferred synchronous, multicast), which are all handled through the Messenger
abstraction: the invocation details are handed to a Messenger which then delivers the
invocation to the remote object(s) (and returns the result if appropriate) according to its
particular policy. The use of a default Messenger can hide this complexity from the
programmer if desired. The invocation protocol is a proprietary one carried over TCP/IP.

Voyager incorporates services for naming, events, remote object creation and
persistence, and a system for grouping objects hierarchically to allow for scalability in
message and event distribution. Security at present is limited to the installation of a Java
security manager; there is no concept of object ownership and/or authorisation beyond
the distinction of whether the objects originated locally or remotely, and no
tamperproofing, secure transmission or the such like. It is implemented entirely in Java
and is available free for commercial use in binary form. Source code can be acquired to
allow extension of the core system e.g. to add new Messenger policies or to modify the
security manager.

3.5 Marimba

Release 1.1 of Marimba’s Castanet, the product behind the architecture outlined in the
previous chapter, is now available. This version is based on JDK 1.1, which means that
it is possible for the Castanet Channels to make use of Java RMI to communicate with
the Castanet Transmitter. UpdateNow is also available.

12 Java Distribution and Deployment 29-Oct-97

3.6 Microsoft’s Application Channels

With Internet Explorer 4.0 (due for full release in September 1997) Microsoft have
extended their Internet Component Download system (introduced with Explorer 3.0) in a
number of ways, including extensions to cope with Java, and a definition language for
specifying information about “applications channels”, i.e. executable content intended to
evolve over time that is accessed using the “push” or “smart-pull” paradigm. The system
allows the specification of the components of an application, their versions and the
interdependencies between them, and a browser that is able to understand this
specification can automatically download and install the application, as well as
periodically check for changes, patches and so on. As such it has an overlap with
Castanet as a method of deploying and maintaining Java software.

Application channels are specified in a Channel Definition Format (CDF) file
[Microsoft97a], which uniquely names the application, gives its version and a description
and points to a code base (or multiple code bases) via a URL. The CDF file is also
responsible for specifying such things as update schedules. The code base referenced is
intended to be an Open Software Description (OSD) file [Microsoft97b] (or an archive
file containing an OSD file). The OSD points to the actual code required, allowing
variants to be specified based on processor type, operating system etc., and shows
dependencies on other components and minimum system requirements. The syntax of
both CDF and OSD files conforms to the proposed Extensible Markup Language (XML)
standard, and both have been submitted to the W3C as proposed standards.

Explorer 4 understands CDF and OSD files and uses the information in them to install
components appropriately. The technology is clearly early in its development cycle
though. The versions of the OSD and CDF standards submitted to the W3C differ from
the latest available from Microsoft, which differ again from the descriptions of their use
elsewhere in Microsoft’s documentation. Furthermore, although the purposes of CDF
and OSD files seem clear and distinct, there is actually much overlap between the two,
with both files specifying version information, supported OSs etc. A second problem is
that although the CDF and OSD formats are being pushed as open standards, they are
only supported by the Explorer browser at present; that in turn only supports its own
proprietary component installation mechanisms and Cabinet archive file format (.cab).

3.7 Lotus Notes

Lotus Notes [Lotus97] is a document-oriented database (amongst other things) that
supports version control, user authentication, replication of database contents amongst a
number of peer servers, and the download of contents to clients. The system now
supports the storage of Java code within the database so providing an alternative solution
to Castanet for the distribution and control of Java applications.

3.8 Java Beans

JavaBeans [Sun97e] is a component architecture for Java. It defines APIs and support
for producing reusable software components, with the intention that these component can
then be rapidly assembled into a complete application. As such, it is not strictly speaking
a technology for distribution or deployment of Java, but it is likely to influence the

29-Oct-97 Java Distribution and Deployment 13

development of such technologies by defining a standard for distributable objects that
can interwork remotely. It will almost certainly be referenced by the responses to the
OMG’s component architecture RFP [OMG97e], and its event model has already been
used as the event model for Voyager (0). JavaBeans events were also used as the basis
for APM’s Object Monitor distributed event system [APM97a].

3.9 JECF

The Java Electronic Commerce Framework [Goldstein96] is Sun’s offering for
supporting electronic commerce applications written in Java. It has two new features
that have a bearing on the issues of distribution and deployment of Java. First, it defines
a “cassette” system for persistent downloadable code. This is similar to the applet idea,
but provides for long-term information such as services classes or security keys to be
downloaded, installed, and then retained after their usage is over rather than being
discarded as applets are. This concept bears some resemblance to the “cartridges” of
Oracle’s Network Computing Architecture.

Secondly, it extends the Java security model to support the notion of principals and
capabilities. This extension allows the definition of identifiable roles with particular
rights. These rights can be granted on whatever level of granularity is required, down to
per-object and per-method, and can be transferred. If this framework becomes widely
accepted, it could provide the basis for a flexible system for authorisation of the control
of deployment of distributable objects and access to services by those objects.

14 Java Distribution and Deployment 29-Oct-97

4 Analysis

4.1 The State of the Art

Static object-oriented distributed computing, i.e. where the location of an object is fixed
once it has been instantiated, now has a reasonably well defined architecture in CORBA
as well as a wide range of stable conformant technology. With Java there is the
additional alternative of RMI. Other products are emerging for supporting the
deployment and management of objects (e.g. ComponentBroker and Castanet) and,
separately, for supporting objects that have mobility between systems (Aglets etc.).

Of the products that attempt to move beyond the static model, only Castanet is currently
shipping in a production version; the rest are only available in alpha or beta versions at
present. Plans for moving to production versions have been announced for Component
Broker and Voyager.

4.2 The Missing Pieces

4.2.1 An Architecture for Dynamic Systems

Neither CORBA nor RMI currently address the issues of initial deployment of objects
and their possible redeployment during their lifetime (i.e. mobility). Of those products
that do tackle this area, most focus on solving particular narrow technical problems as
opposed to defining a coherent architecture for dynamic distributed computing covering
deployment, communication, mobility, management and security, and then placing
themselves as a component within that architecture.

There has been no examination of the different applications of mobility with the aim of
teasing out a common architecture (or explaining why such cannot exist). This has
resulted in completely different systems being produced for solving problems that are all
essentially to do with code mobility: application front-ends are deployed using applets
and browsers, or perhaps Castanet; IBM’s Component Broker can be used to deploy the
elements of a distributed application; load balancing is handled by a separate transaction
monitor, and mobility for local access to resources is handled by agent systems.

4.2.2 Modularity and Transparency

JavaBeans is an attempt to provide the Java world with a long-standing software
engineering dream, namely the ability to build applications by plugging together

29-Oct-97 Java Distribution and Deployment 15

standardised off-the-shelf components. Deployment and mobility technology provides
the means for getting those components to their users and automatically updating them
with the latest versions. The two together give a vision of future applications being built
from multiple components obtained from multiple vendors, with the ability to evolve as
newer components become available with improved performance or added functionality.

Two important enabling features are still missing from most of the systems described
above though: modularity and transparency. To realise this type of programming
environment requires middleware that supports deployment and control at the level of
individual components (modularity), and that does so without requiring every component
to be aware of and in control of that deployment (transparency).

Castanet, the only deployment solution at present, only deals in complete applications
(channels); there is no provision for mixing together components from separate
transmitters. Conversely the various agent systems, which have the potential for
deploying components from many sources fall down on transparency - only objects that
have been written specifically to be agents can be mobile.

4.2.3 A Policy Framework for Dynamic Systems

An application can be viewed in terms of its functionality (a computational view), or in a
more concrete fashion in terms of how it is deployed within a system (an engineering
view). The mapping between the computational and engineering views is governed by
policies on security, quality of service, resource usage and so on. These policies tend to
change with time, e.g. through the emergence of new technology, changes in system
configuration, or changes in business relationships, often more rapidly than the basic
functionality of the application. The technology for dynamic deployment and mobility
described above theoretically enables the configuration of applications to be modified in
response to policy changes without the application itself being modified.

This would be difficult in practice though, first because of the lack of mobility
transparency mentioned above and secondly because no framework yet exists for the
specification and (automatic) interpretation of policy. Furthermore if this framework is to
handle policy relevant to inter-domain interactions then an appropriate security model
must be developed and supported by middleware.

4.2.4 A Legal and Commercial Framework

The world of tomorrow could be populated by distributed object-oriented applications
which are built dynamically from components from multiple sources, and which are
deployed (and re-deployed) automatically through the interpretation of users’ policies
and goals within current environmental conditions. However, for this scenario to be
realised requires not only the gaps identified above to be filled in, but also a legal and
commercial framework to be developed. For instance, the issue of charging for resource
usage by foreign agents must be resolved, as must the legalities of the rights and
obligations of mobile objects and their host systems. Can you murder an agent with
impunity, misdirect it, or trap it? Can an agent “sign” an agreement on behalf of its
owner in a legally meaningful manner? Dynamic distributed systems will develop
without resolution of these issues, but for full exploitation of their possibilities over the
Internet answers to these questions must be found.

16 Java Distribution and Deployment 29-Oct-97

5 Implications

5.1 The Flexinet Project

As shown in this analysis, the key failings in all current offerings are a lack of a coherent
architecture for distributed computing that encompasses dynamic deployment, and the
inability to separate out policy decisions from engineering. So, the clear goal of the
Flexinet project is to develop such an architecture which allows separate specification of
policy, and with the eventual aim of providing automatic implementation of that policy.

A number of key constraints on the architecture are also highlighted: first, there are many
different solutions on offer, some complementary, some competing, but with no clear
market leaders as yet. Hence, care must be taken to design the architecture with flexible
abstractions from the ground up so as to be able to incorporate whatever emerge as the
standard components, naming schemes, and protocols of the future. Secondly, the
popularity and utility of agent systems has demonstrated that the architecture must take
into account continuous (re-)deployment of objects; static one-off deployment before the
application starts is not sufficient.

5.2 The Digitivity CAGE Product Line

Two facts relevant to the Digitivity CAGE [Digitivity97] product line emerge from this
survey: first, that the number of ways of delivering Java to the executing host is
increasing, and secondly, that the framework infrastructure within which the Enterprise
CAGE is planned to operate (e.g. security and transaction services such as exist in the
CORBA world) does not yet exist for the native Java and RMI world.

The multiplicity of Java delivery mechanisms affects the current CAGE. The probability
here is that it will not be extended to attempt to cope with all of these mechanisms;
instead the most popular will be identified through market research, and only those
handled. Changes to handle code mobility as opposed to just applet download could
support applications more efficiently that the current simple webserver caching. An
interesting problem is how to deal with the CAGE’s redeployment policies may result in
components downloaded to the same logical location being deployed to different
physical locations; this will have an effect on the operation of components that believe
that they are actually colocated.

The Enterprise CAGE is aimed at long-term end-to-end secure business links. The lack
of framework offers the possibility of developing complementary products such as a
transaction service, or an RMI-aware firewall. The emphasis on long-term links means
that arbitrary mobility is not required, though it might be useful for off-line working.

29-Oct-97 Java Distribution and Deployment 17

References

[APM97a]
Object Monitor; Schwiderski, S., Hayton, R.; APM Ltd., January 1997.
APM.1938.01.

[APM97b]
Comparison of autonomous mobile agent technologies; Bursell, M., Ugai, T.;
APM Ltd., June 1997. APM.1989.01.

[Cetus97]
Cetus Links: 5380 Links on Object Orientation / Object Request Brokers.
http://www.rhein-neckar.de/~cetus/oo_object_request_brokers.html

[Digitivity97]
Secure Mobile Code Management; Herbert, A.; Digitivity, Inc., May 1997.
http://www.digitivity.com/html/SecMCode.pdf

[Fujitsu97]
Kafka: Yet Another Multi-Agent Library for Java; Fujitsu Laboratories Ltd., June
1997. http://www.fujitsu.co.jp/hypertext/free/kafka/index.html

 [GM97]
Introduction to the Odyssey API; General Magic Inc., May 1997.
http://www.genmagic.com/agents/odysseyIntro.pdf

[Goldstein96]
The Gateway Security Model in the Java Electronic Commerce Framework;
Goldstein, T; Sun Microsystems Laboratories/JavaSoft, November 1996.
http://java.sun.com/products/commerce/jecf_gateway.ps

[Guideware97]
AgentWorks; Guideware Corporation, July 1997.
http://www.guideware.com/site/agentworks.html

[IBM97a]
IBM Component Broker - Technical Overview; IBM Inc., May 1997.
http://www.software.ibm.com/ad/cb/litp.htm

[IBM97b]
Aglets Library API - User’s Guide; IBM Inc., July 1997.
http://www.trl.ibm.co.jp/aglets/api/API_users_guide.html

[Iona97]
OrbixWeb for Java; Iona Technologies, July 1997.
http://www.iona.com/Products/Orbix/OrbixWeb/index.html

18 Java Distribution and Deployment 29-Oct-97

[Lotus97]
Lotus Notes; Lotus Development Corporation, July 1997.
http://www2.lotus.com/notes.nsf

[Marimba97]
Marimba Castanet Datasheet; Marimba Inc., 1997.
http://www.marimba.com/datasheets/castanet-ds.pdf

[ME97]
Concordia: An Infrastructure for Collaborating Mobile Agents; Mitsubishi Electric
ITA, February 1997.
http://www.meitca.com/HSL/Projects/Concordia/MobileAgentConf_for_web.pdf

[Microsoft97a]
Channel Definition Format (CDF); Microsoft Corporation, July 1997.
http://www.microsoft.com/standards/cdf.htm

[Microsoft97b]
Specification for the Open Software Description (OSD) Format; Microsoft
Corporation & Marimba, Inc., August 1997.
http://www.microsoft.com/standards/osd/

[ObjectSpace97]
Voyager Core Package Technical Overview; ObjectSpace Inc., July 1997.
http://www.objectspace.com/Voyager/VoyagerTechOview.pdf

[OMG95]
Data Interchange Facility and Mobile Agent Facility RFP (ORBOS RFP11);
Object Management Group Inc., November 1995, 1995/95-11-03.
ftp://ftp.omg.org/pub/docs/1995/95-11-03.pdf

[OMG96]
Objects-by-value RFP (ORBOS RFP2); Object Management Group Inc.,
December 1996, orbos/96-06-14.
ftp://ftp.omg.org/pub/docs/orbos/96-06-14.pdf

[OMG97a]
A Discussion of the Object Management Architecture; Object Management Group
Inc., January 1997.
http://www.omg.org/library/oma/oma-all.pdf

[OMG97b]
CORBA 2.0/IIOP Specification; Object Management Group Inc., February 1997,
formal/97-02-25.
ftp://ftp.omg.org/pub/docs/formal/97-02-25.pdf

[OMG97c]
IDL Java Mapping 1.0; Object Management Group Inc., March 1997,
orbos/97-03-01.
ftp://ftp.omg.org/pub/docs/orbos/97-03-01.pdf

29-Oct-97 Java Distribution and Deployment 19

[OMG97d]
Java to IDL RFP (ORBOS RFP5); Object Management Group Inc., March 1997,
orbos/97-03-08.
ftp://ftp.omg.org/pub/docs/orbos/97-03-08.pdf

[OMG97e]
CORBA Component Model RFP (ORBOS RFP8); Object Management Group
Inc., June 1997, orbos/97-06-12.
ftp://ftp.omg.org/pub/docs/orbos/97-06-12.pdf

[Oracle96a]
Network Computing Architecture White Paper; Oracle Inc., September 1996.
http://www.oracle.com/nca/html/nca_wp.html

[Oracle96b]
Web Request Broker Programmer’s Reference, Release 3.0 beta 3; Oracle Inc.,
September 1996.
http://www.olab.com/datasheets/wrbref.pdf

[SBH96]
Mole - A Java Based Mobile Agent System; Straßer, M., Baumann, J., Hohl, F.;
University of Stuttgart, October 1996; ECOOP ’96.
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/ECOOP96.ps.gz

[Sun97a]
Java Remote Method Invocation Specification; JavaSoft: Sun Microsystems Inc.,
February 1997.
http://java.sun.com/docs/jdk1.1/rmi-spec.pdf

[Sun97b]
Frequently Asked Questions - Applet Security; JavaSoft: Sun Microsystems Inc.,
June 1997.
http://java.sun.com/sfaq/index.html

[Sun97c]
JDK1.1.3 Documentation; JavaSoft: Sun Microsystems Inc., June 1997.
http://java.sun.com/products/jdk/1.1/docs/index.html

[Sun97d]
Solaris NEO; Sun Microsystems Inc., July 1997.
http://www.sun.com/solaris/neo/solaris_neo/index.html

[Sun97e]
JavaBeans: The only component architecture for Java; Sun Microsystems Inc., July
1997. http://java.sun.com/beans/

 [Visigenic97]
Visigenic VisiBroker; Visigenic Software Inc., June 1997.
http://www.visigenic.com/prod/vbrok/vbjDS.html

