
BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 1, version 1.0 Advanced Technology Centre

Sparing for an OO CASE: A Transparency approach for
building Fault Tolerant Systems

Yoko Chung
Distributed Systems and Interactive Broadband

Advanced Technology Centre
BNR Europe Ltd

01279 403686 (Y.K.Chung@bnr.co.uk)

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 2, version 1.0 Advanced Technology Centre

Availability within Telecommunications

• High availability is an important non-functional requirement in the
telecommunication systems.

• General requirement for 99.999% availability.

• Core switching & call management components tend to use specialised hardware
for fault tolerance.

• Example - synchronous dual processing.

• Specialised hardware expensive but necessary in switches as operations require
the fast throughput.

• Call management can be made cheaper.

• Use off the shelf hardware and software fault tolerance mechanisms.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 3, version 1.0 Advanced Technology Centre

Faults in Distributed Systems

• Lots of faults can disrupt interaction between distributed objects.

• Types of faults include:

• Hardware - failure of devices.

• Software - Transient bugs disappear when re-examined.

• Operation - accidents may occur.

• Environmental - earthquakes.

SERVICEserver
addr (A)

server
handle (A)CLIENT1

RCPs

Rare Heisen bugs

Kernel / hardware faults

External: Power failures
Earthquakes

Accidental disconnection

machinemachine

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 4, version 1.0 Advanced Technology Centre

Introduction to Sparing

• General solution to increase availability of services is through replication.

• Several replication schemes available;

• E.g., passive groups, active groups, broadcast protocols.

• Sparing is the simplest form of a passive group.

• Can be achieved using two off the shelf real time workstations configured with one
running as master and the other as spare.

Master server
addr (A)

machine1

Spare

server
addr (A’)

machine2

(A, A’)
Client

machine3

Leader Follower
Synchronisation

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 5, version 1.0 Advanced Technology Centre

Sparing Strategy
Software advantages:

• Hardware option for Fault Tolerance expensive.

• Software fault tolerance enables the use of general hardware.

• Enables exploitation of the power curve.

• Software enables fast turnaround to handle changes in resiliency requirements.

Sparing advantages:

• Simple and optimal.

• Appropriate performance for soft real time systems.

• Data consistency and synchronisation flows in one direction.

• Provides a way for online version upgrade without loss of availability.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 6, version 1.0 Advanced Technology Centre

Master and Spare Synchronisation
• Sparing involves the following components:

• master and spare data consistency - recovery and continual update.

• heartbeats, failure detection and switchover.

• Transport mechanism between Master and Spare - uses the ONI real time
distributed platform which provided a choice of lightweight reliable
messages, reliable casts and RPCs.

Recovery
• Resilient objects are given unique ids and are kept track of at both the master and

spare.

• Spare maps master objects ids to its corresponding resilient objects.

• Recovery uses 2 phase approach;

• 1st phase recreates all resilient objects at the spare which are present on the
master.

• 2nd phase sends states of objects to the spare. 2nd phase recovery is
interleaved with normal synchronisation from the service updates.

• 2 phase approach allows pointers to objects to be translated.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 7, version 1.0 Advanced Technology Centre

Continuous update/Journalling
• Transactions are required for strict synchronisation. This can be relaxed for more

optimistic approach.

• Transactions may not be crucial - each update or journal could be atomic.

• 2 Approaches to journalling:

• State based approach - each journal captures value of object which is then
copied by the spare object.

• Event based approach - each journal captures event which is then replayed
on the spare object.

• Hybrid approach taken.

• Transitional approach used for deterministic events such as object creation
and deletion.

• State based approach for checkpointing of individual objects state.

• Object/data context sparing necessary for the spare to be warm and reduce
switchover time -> structured approach to creation/deletion of resilient objects.

• To by pass the state based approach for updating individual state, each spare
object was given the ability to replay user defined events on receiving journals.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 8, version 1.0 Advanced Technology Centre

Heartbeats and Failure Detection

• Doctor and patient analogy.

• Periodic heartbeats are sent from master to spare using ONI reliable casts.

• Failure detection latency dependent on heartbeat priority & send intervals.

• Degree of network fault tolerance achieved through duplication of the heartbeat
delivery path.

• Spare initiates switchover on failure detect.

Master Machine Spare Machine

Failure
Detect

heartbeat

APPL
APPL’

Service
Requests

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 9, version 1.0 Advanced Technology Centre

Spare & Client Switchover Scenario
• Master failure verification requires third party participation.

• Clients need spare and master address information.

• Master and spare need to know client addresses because;

• the master will need to tell clients of new spare.

• the spare will need to tell clients to switchover.

MASTER

master = x
spare =””
clients = (c1)

Master’s
Sparing Interface

CLIENT1

master = x
spare =””

1 Initial scenario has 1 master and 1 client.
Client obtains sparing interface which encapsulates
master and spare interfaces - client only sees one and
messages are only sent to the master.

MASTER

master = x
spare = y
clients = (c1)

CLIENT1

master = x
spare = y

2 On recovery of a spare y, the spare is told of all the clients and

Service
Interface

SPARE (y)

master = x
spare = y
clients = (c1)

1 recover(y)

3 setspare(y)

then the clients are told of the new spare.

2 addclients(c1)

Heartbeats can then be started at the spare. Failure detection at the spare
can be started on receival of the 1st heartbeat.

heartbeat link

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 10, version 1.0 Advanced Technology Centre

Spare Switchover contd,

• In diagram 4, there are several ways to determine master-spare network failure or
true master server failure, an example is the pessimistic approach - fail switchover
if any client can access master.

MASTER

master = x
spare = y
clients = (c1, c2)

CLIENT1

master = x
spare = y

SPARE

master = y (was x)
spare = ““ (y)
clients = (c1, c2)

CLIENT2

master = x
spare = y

MASTER

master = x
spare = y
clients = (c1, c2)

CLIENT1

master = x
spare = y

3 The client’s creation of a sparing interface (with the master address)

SPARE

master = x
spare = y
clients = (c1, c2)

CLIENT2

master = x
spare = y

1 reg client (c2)

2 addclient(c2)

3 addspare(y)

4 On master process/ machine failure, heartbeats will fail and the spare
shall initiate switchover. An attempt is made to switchover each client to

1 switchover!!

the spare. To determine valid switchover, each client asserts that the
master is truly dead before acknowledging switchover ok.

1 switchover?

3 switchover ok.
2 still alive?
->dead

If the master is not dead, then the client shall fail switchover, and the spare
can then back down from initiating switchover. On link repair, the master
 reactivates failure detection on the spare by re-sending heartbeats.

will effect registration of the client’s address to the master which will
then relay the address to it’s spare. The master will then send the
spare’s address to the client.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 11, version 1.0 Advanced Technology Centre

Sparing Transparency
• Transparency allows for separation of resiliency concerns from specific

application functionality;

• Allows programmers to focus on main system functionality
• Caters for future resiliency changes without having to change the systems

functional design.

• Transparency implications on Clients that use spared services are that they need
to mechanisms to perform switchover. Transparency on spared service is easy
using a wrapped handle.

• For developing resilient applications, using conventional C++ & IDL would
probably employ preprocessing of C++ classes and adherence to abstract base
classes.

• However in this particular approach, resiliency transparency has been integrated
into a CASE tool.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 12, version 1.0 Advanced Technology Centre

Introduction into the ObjecTime CASE tool

• ROOM == Real time Object Oriented Modelling methodology originally created to
model real time telecommunications systems.

• Originally developed by Bran Selic within BNR

• ObjecTime is the graphical tool developed to support ROOM.

• ObjecTime provides system modelling and design of arbitary complex event driven
real time systems and provides for simulation and rapid prototyping.

• Completes the development cycle by supporting the generation of C++ code to run
on its external micro run time system - virtual machine to execute models.

Executable model

OT microRTS

C++ Code

ObjecTime Design

Generates

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 13, version 1.0 Advanced Technology Centre

ObjecTime Concepts
• ROOM provides a hierarchical decompositional approach to object oriented

design.

• Fundamental building blocks (classes) are called actors which possess structural
and behavioural properties.

• An actor’s structural definition may contain references to nested actor instances.

• Each actor reference has a user specified name.

• Communication ports are declared by actors for sending out and receiving
messages.

• Two actors may communicate through a binding which is basically a connection
between two ports.

• Communication can also be done through layered services - SPPs and SAPs -
remove the need for explicit bindings.

X_Actor (structure definition)

foo bar

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 14, version 1.0 Advanced Technology Centre

ObjecTime Concepts contd,
• To specify an actor’s behaviour, finite states are defined graphically with

transitions from one state to another.

• An actor instance is always in one state.

• An event is triggered when the actor receives messages from other actors through
its ports or via timer events.

• Transitions contain code which is run on the occurrence of a particular event that
is appropriate to an actor in a particular state.

• An actor’s definition closely resembles a C++ class definition, where member data
are termed extended finite state, which can be modified via transition code.

X_Actor (behaviour definition)

s1

s2
s3

t1
t2 t3

t4

t5
t6

esv_var = 45;
port.send(asignal);
........

transition code

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 15, version 1.0 Advanced Technology Centre

Sparing Transparency for the ObjecTime CASE tool
• Declarative API for Resiliency:

• Declaration of resilient objects at an Actor instance granularity.

• Naming convention used for actor reference names.

• Simply postfix of “ROB” to name of actor reference names.

• Deterministic actors at the spare could run via the “RUNNABLE” postfix.

• Declarative mechanism for system designers to specify synchronisation
points.

• Synchronisation points specified in transition code.

actorROB (ESVs: foo, bar, etc)

Master s1
s2

t1

t2
init

actorROB executes t1
On entering state s2, sparing marshals

actorROB

Spare s1
s2

t1

t2
init

actor state & sends to spare.

Sparing receives update and
injects new state into actorROB.

(actorROB id,
state s2,
ESVs foo, bar, etc.)

SYNC
- specificActions()

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 16, version 1.0 Advanced Technology Centre

• Passing sparing events back into ObjecTime

• Sparing events such as failure detection is relayed back to the ObjecTime
model as an ObjecTime signal.

• ObjecTime actors explicitly setup SPP and corresponding SAP.
• Actor configures sparing to send it signals corresponding to particular

events that it wants to know about.
• On the event, corresponding signals get sent through the configured SAP.

SPP

OT Actor instance

Passing events from sparing to ObjecTime actor instances

1 Sparing detects failure.

3 Actor reacts to meg event.

SAP

SAP 2 Sparing sends signal on configured SAP

msg

Sparing
Mechanism

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 17, version 1.0 Advanced Technology Centre

• Resiliency integration with the CASE tool:

• A preprocessor tool is run after ObjecTime code generation.
• Generates marshalling routines for each actor class.
• Resiliency functionality added to the ObjecTime model implementation by

extending the base hierarchy of the generated C++ code.
• From the declarations of reference names, the extended base class identifies

each resilient object.

OT microRTS Lib

C++ Code

libSparing.a

ObjecTime Design

Generate

Preprocess & extend
Modify generated code to
slip in interface to sparing
mechanisms

C++ Code

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 18, version 1.0 Advanced Technology Centre

Overall building process for spareable ObjecTime
implementations

•

ObjecTime Design of System

Generated C++

Transformed C++

Compile

Link

System executable

ObjecTime’s

Sparing library with

microRTS library

heartbeats, detection
ROBman, etc

ONI - real time
distributed platform

X_Actor /* design specific */

Sparing Base class
/* Indirection layer for

Actor Base class
/* Provided by microRTS */

 sparing transparency */

Original
inheritance
relationship

Preprocessor slips
in new inheritance
relationship

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 19, version 1.0 Advanced Technology Centre

Sparing and ObjecTime Summary
• ObjecTime enforces the maintainance of mapping model designs to

implementations.

• Text descriptions can also be attached to individual model components to give a
completeness feel for the development documentation process.

• Sparing is a simple approach for high availability that can be applied to any
distributed system.

• Clients to spared servers only need proxy extensions to handle switchover.

• Sparing approach works well with ObjecTime models;

• ROOM enforcement of actor structuring make replication of object context
simple.

• Enables spare application objects to remain in context in readiness for
switchover.

• Simple transparency approach;

• Simple declarative for enabling of preprocessing.

• Preprocessing approach fits in neatly into the ObjecTime code generation
phase.

Other interests: Sparing & load balancing, ObjecTime and distributed systems.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 20, version 1.0 Advanced Technology Centre

Other uses for Sparing - Load Balancing ?

• The aim of load balancing is all about adding more processors to gain more
throughput.

• Responsibility of the designer to develop the distributed solution which typically
involves fragmentation and replication of data/resources.

• Load balancing easier where there is a clean resource and work split.

• Complex where replication of services with duplicated resources may result in
inconsistency.

• Sparing does not offer a load balancing solution - although a simple one maybe to
off load read only operations to the spare.

Service
with resources
a,b,c,d,e,f

Client1

Client2

Client3
Client4

processor X1 Ideal problem type.

Client1

Service
with resources
a,b,c

processor X

Service
with resources
d,e,f

processor Y2 Balanced Solution.

Service
Trader

Client2
Lookup

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 21, version 1.0 Advanced Technology Centre

• Distribution of applications to enable load balancing only offers partial availability
in the presence of failures.

• Sparing should be independent of load balancing concerns .

• Sparing should be added to distributed solutions for full high availability.

• But can we do better out of sparing to exploit the extra processor?

• Possible to exploit the redundant spare in the processing of read-only
transactions.

• Assuming that work load can be split cleanly, 2 or more independent master and
spare processes can be co-located on the same machine

Service
at site A

clients near
site A

Service
at site B

clients near
site B

Spare
for site A

Spare
for site B

clients near
site A

Service
at site B

clients near
site B

Spare

for site A

Spare
for site B

Service
at site A

service

switchover

Failure

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 22, version 1.0 Advanced Technology Centre

Sparing and Load Balancing, contd,

• Ideal when number of synchronisation messages are low.

• Makes full use of both machines if spare is doing relatively little.

• Little increase in overhead for master and spare management.

• One machine may become overloaded when one machine goes down.

RT Hardware

Master

X

Spare

Y

RT Hardware

Master

Y

Spare

X

master->spare synchronisation

Service Requests

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 23, version 1.0 Advanced Technology Centre

ObjecTime and CORBA
• Current CORBA development approach pros:

• CORBA - standard for interoperable distributed systems.
• Can use simple environment for C++ & IDL development.
• To some degree, provides for rapid prototyping & development through code

generation from IDL - compared to writing stubs directly.

• Cons

• Analysis, modelling and design of servicing objects not enforced or
consistent amongst distributed components.

• No graphical design tool to ensure mapping of design onto implementation -
relies on quality procedures, documentation & configuration management
tools.

• ObjecTime provides for modelling of distributed systems but does not generate
distributable implementations.

BNR Europe Limited Sparing for an OO CASE

1995-3-20, Yoko Chung Slide 24, version 1.0 Advanced Technology Centre

• ObjecTime model concepts have similarities with CORBA concepts.

• Each actor is an autonomous object.
• ObjecTime protocol definitions map onto interface specifications and actor

ports map onto interfaces.
• ObjecTime messages sent between actors map onto messages sent between

ORBs.

• Opens up interesting area for a CASE tool to model and generate CORBA systems.

• A prototype has been developed to show ObjecTime and CORBA interworking.

ActorX ActorY

OrbX OrbY

ObjecTime Model CORBA Model

Model Mapping

