
Performability Monitoring

and Modelling of

ANSAware Environments

Raymond H. Pijpersy, Leonard J.N. Frankeny

Boudewijn R.H.M. Haverkortz

yPTT Research

P.O. Box 15000, 9700 CD Groningen, The Netherlands

E-mail: r.h.pijpers@research.ptt.nl, l.j.n.franken@research.ptt.nl

zUniversity of Twente

Department of Computer Science Tele-Informatics and Open Systems

P.O. Box 217, 7500 AE Enschede, The Netherlands

E-mail: b.r.h.m.haverkort@cs.utwente.nl

February 28, 1994

Abstract

The Performability Manager (PM) is a distributed system component
which maintains the application-requested Quality of Service (QoS) by dy-
namically recon�guring ANSAware-based distributed applications, using a
model-based optimization procedure. The PM receives information about
the ANSAware-based application from a distributed monitoring process
based on JEWEL and DEMON. With this information, and using pre-
de�ned stochastic Petri net (SPN) models of ANSAware applications, the
PM automatically constructs an overall SPN performability model which
is subsequently used for the determination of the provided QoS. Based on
the analysis results, the PM can decide to initiate on-line system recon-
�gurations, if needed to maintain the requested QoS. ANSAware provides
facilities for these dynamic recon�gurations.

In this paper we focus on monitoring the ANSAware-based experimental
distributed environment in which the modelling and evaluation aspects
are totally automated. We also show the feasibility of the proposed PM
by presenting some operational results. The contents of this paper is a
summary of the ANSAware related topics in "Modelling Aspects of Model
Based Dynamic QoS Management by the Performability Manager" by
Franken, Haverkort and Pijpers and the M.Sc. thesis with the same title
as this paper by Pijpers.

1



eventsevents

instrumented ANSAware objects

Indices

reconfiguration

Performability

Manager

Performability

ANSAware

mechanisms

reconfiguration
decisions Configuration

Information

Monitors

Performance Model

Library

labels
behaviour

Figure 1: The Performability Manager in an ANSAware environment

1 Introduction

For modern distributed systems it is important to be able to realize and maintain
a requested Quality of Service (QoS). The QoS can degrade for several reasons:
the addition of new applications, the updating of applications, the change of
workload (new users) or the occurrence of failures and repairs.

The Performability Manager (PM) is a distributed system component which
maintains the application-requested QoS by dynamically recon�guring a distrib-
uted system [4].

In a nutshell the PM can be described as a distributed system feedback man-
ager (see Figure 1). If the QoS decreases, it is detected by the monitoring tool
and noti�ed to the PM. The PM creates dynamically new alternative con�gu-
rations and calculates the QoS of these con�gurations using the Performability
Model. Together with the monitoring results and the behaviour labels (SPN
sub-models) the con�guration can be transformed into an SPN model which
describes the dynamical behaviour of the con�guration. The current con�gu-
ration will be updated to obtain the best alternative con�guration calculated.
The PM uses the ANSAware mechanisms to perform these recon�gurations. Af-
ter recon�guration the cycle starts again; the monitors will monitor the object
system and notify any decrease of QoS to the PM1.

This paper is further organized as follows. In Section 2 the experimental

1For all speci�c information on the Performability Manager is referred to the IEEE pa-
per [4] and proceedings paper [5]. In this paper the monitoring and modelling of ANSAware
environments is addressed as presented in [5] and fully documented in the M.Sc. thesis [11].

2



environment and the ANSAware computational model of our application is pre-
sented. In Section 3 the creation of a performability model using prede�ned
stochastic Petri net models of the system components is presented. The moni-
toring of the experimental distributed environment is discussed in Section 4 and
parameterization and �rst results on measurements are presented in Section 5.
Speci�c ANSAware related topics of performability monitoring and modelling is
discussed in Section 6. Finally, in Section 7, the implementation and operational
issues of the presented modelling techniques, our ongoing research and outlines
for future research are discussed.

2 An ANSAware-based distributed environment

The application in our distributed environment is realized usingANSAware. From
the ANSA computational model we want to come to a performability model,
which will be discussed in later sections.

In Section 2.1 we present a distributed application which is used as an ex-
perimental application. Section 2.2 presents the experimental application using
the ANSAware computational model.

2.1 An ANSAware-based number translation service

In this section we describe the (telephone) number translation service (nts) as
provided in intelligent networks [2, 6, 12]. In the sequel we will refer to this
application as the IN/ANSA application.

End-Users are submitting requests or tasks for the application at a certain
rate. Since we do not have real users, we simulate the user behaviour by a
so-called Generating Component (gc). The gc generates the calls for the nts.

The nts is provided by the following application components (see also Fig-
ure 2):

1. The Selection Component (sc): this component selects a service using
the contents of the requests it receives (number translation service in this
example).

2. The Number Translation Component (ntc): this component receives re-
quests for number translations. The ntc sends a request to a database
component for the required number and to a billing component for the
creation of a bill. The number received from the database is returned to
the sc.

3. The DataBase Component (dbc): this component receives requests for
speci�c numbers. It will fetch the number from disk and return the number
to the component which requested the number.

3



GC SC

BC

DBC
USERS

MC

NTC

Figure 2: The experimental ANSAware application

ansa

unix

ansa

unix

ansa

unix
sun 3sun 2sun 1

ethernet

application

Figure 3: The distributed system

4. The Billing Component (bc): this billing component receives requests for
the preparation of a billing record.

The Management Component (mc) does not belong speci�cally to the nts,
but provides the PM with the necessary \buttons to push" to perform a re-
con�guration. The mc in turn uses ANSAware facilities to perform necessary
recon�gurations. The other components (sc, ntc, dbc and bc) are compo-
nents of the application and can be controlled by the mc.

For the experimental application we use a small distributed system consist-
ing of three SUN SPARC workstations connected by an Ethernet as depicted in
Figure 3. The workstations run UNIX and, on top of that, ANSAware. Of course,
more heterogeneous environments are possible as well, e.g. using both SUNs and
PCs. Within this experimental distributed environment we use two monitors,
DEMON and JEWEL. DEMON, the Distributed Environment MONitor [10],
is used to visualize the structure of the experimental distributed environment.
JEWEL [9] is used to do performance measurements in the experimental dis-
tributed environment.

2.2 The computational model of IN/ANSA

In our experimental distributed environment the computational objects are the
application components of the distributed system. One or more computational

4



GC SC

BC

DBC

NTC

Figure 4: The experimental application described in a computational form

objects make up a distributed application as shown in Figure 4. Each com-
putational object has been implemented as a capsule. All invocations for the
experimental application are announcements, except for those between the ntc
and the bc and those between the ntc and the dbc; these are interrogations.

3 A performability model of IN/ANSA

To evaluate an alternative con�guration we need a performabilitymodel. There-
fore, an alternative con�guration is transformed into a performability model by
replacing each component by a prede�ned stochastic Petri net (SPN) model.
The resulting performability models are both exible and relatively easy to
solve by current day software tools [3, 7]. In this paper we will deal with the
performance aspects of the model only.

In Section 3.1 we present the generic SPN modelling of user, application and
system components. The performability model of the experimental distributed
environment is presented in Section 3.2.

3.1 The SPN models used to realize the performability

model

In this section we present a generic way to transform each component of the
distributed environment into an SPN sub-model. We start with the application
level, then the system level and �nally present how the users are modelled using
SPN.

For each operation or service provided by an application component an SPN
model component is prede�ned. In such an SPN model a service is represented
by a timed transition. The invocation of a service at the interface by a client
is represented by putting a token in the corresponding \service-input place".
Resources must be allocated (e.g. an cpu) and the operation can be performed

5



server

server with

interface
freeallocate

resource resource

timed transition

result of operationinvocation of operation

operation

service-input place

one service

Figure 5: The SPN representation of an ANSAware service provision

(answer)

resource
allocate

resource
free

interrogation
input place

Figure 6: The SPN representation of an announcement or interrogation opera-
tion

(the timed transition). In Figure 5 we see (at the right hand side of the arrow)
the SPN representation of one operation of a computational object (shown at
the left hand side of the arrow) or application component. The output of the
timed transition, i.e. the operation, is an announcement or an interrogation to
another operation (see Figure 6). With an interrogation invocation as output
the component will await for an answer and then continue operation.
The duration of an operation is represented by a timed transition. These tran-
sitions represent the work demanded from the resource, for example the cpu
busy time. We can estimate these parameters by running and monitoring the
component in isolation (one component on a single workstation).

The communication between components can be represented in a similar
way. For each (remote) operation, or communication between two application
components allocated to di�erent system parts, a network link must be allo-
cated. The duration of a communication operation is also represented by a
timed transition. In this case a timed transition represents the communication
time per invocation of an operation per network link (see [4]).

The generation of requests by the users is modelled as a Poisson arrival
process, represented by a single timed transition.

6



SC

DBC

BC

sun3 NTCsun2 n1

GC

users (SC,NTC)

Figure 7: The SPN model of con�guration M1

3.2 The performability model of the IN/ANSA environment

Tools for SPN analysis normally only allow �nite state space models. This does
not correspond to the experimental environment. However, we can approximate
an open model by designing a closed model with a large customer population.
The average request rate is modelled by the component users. In this paper
three con�gurations of the application are taken as example: con�gurations
M1, M2 and M3, with each their own allocation of components. M1 features
one nts service of which the components are distributed on two SUNs. M2

features one nts service of which the components are allocated on one SUN
and M3 features two nts service of which the components are distributed on
two SUNs. In Figure 7 the SPN representation of the distributed environment,
using con�guration M1, is given using the prede�ned SPN models.

4 Monitoring of ANSAware applications

Two di�erent monitoring tools, the DEMON and the JEWEL tool, monitor the
experimental environment introduced in Section 2. The DEMON tool [10] mon-
itors and visualizes the functional behaviour and con�guration of the ANSAware
components on the system nodes. These can be used to provide the performa-
bility model with con�guration information. The JEWEL monitoring tool [9]
extracts performability indices from the ANSAware environment and visualizes
them for each component on a graphical display. The performability indices are
used to detect a decrease of QoS and to parameterize the performability model.

In order to provide the monitoring tools with the information needed, the
ANSAware application components have to be instrumented with additional code
for both monitoring systems. Instrumentation for the DEMON tool is performed

7



automaticallyby a pre-compiler designed and implemented at PTT Research [8].
Instrumentation for the JEWEL monitoring tool is performed in a generic man-
ner using the ANSAware operations as a reference point to detect relevant events.
The implementation of the invocation of an operation is embraced by the two
events: request and con�rm. These events are detected by JEWEL and used to
derive the turnaround time of an operation. The implementation of the oper-
ation is also embraced by two events: indication and response. These are de-
tected by JEWEL and used to derive the service time of an operation, as shown
in Figure 9. A detailed prescription of generic instrumentation for ANSAware is
provided in [11].

5 Experiences with monitoring, modelling and

evaluation

A performability model of a distributed application can automatically be con-
structed guided by three input sources (see also Figure 8):

1. A library of prede�ned SPN models. For each ANSAware and system com-
ponent a model has to be available in a library.

2. Con�guration determination. The con�guration has to be obtained from
the system to construct the model from the prede�ned model components
in the library. The DEMON monitor provides this con�guration informa-
tion.

3. Performability indices determination. We use the performability monitor-
ing measurements provided by JEWEL to determine the transition rates
of the timed transitions in the SPN.

The method of tuning the performability model [4], obtains the transition
rates for the SPN from the requirements of the components and the capaci-
ties of the system nodes. A major drawback of this method is the required a
priori determination of the requirements and capacities. Because the source
code of the ANSAware components is processed by pre-compilers and linked with
library functions, exact requirements of the components with respect to process-
ing workload, communication workload, memory access, etc. are hard to assess.
Capacities of the system nodes may be exactly speci�ed by the manufacturers,
but mechanisms like memory caching or disk access cause dynamically changing
capacities of the system nodes. Therefore, we have used a more practical ap-
proach to parameterize the performability model, guided by the measurements
provided by the JEWEL monitoring tool.

The transition rates can be obtained by measuring the service times of the
individual components. In Figure 9 a timing diagram is depicted containing the
monitored time-stamps of the events: request, con�rm, indication and response.

8



Determination

Configuration

ANSAware Application

Constructing

Model

Monitoring

with JEWELwith DEMON

Monitoring

Performability

Indices

Library

Submodel

Petri net

Performability Model evaluation

Figure 8: The performability model is constructed from three input sources

GC SC

Time

DBC/BC

SCindication

DBCindication

DBCresponse

BCresponse

SCresponse

DBCrequest

SCrequest

SCconfirm

DBCconfirm
BCrequest

NTC

NTCindication

NTCresponse
NTCconfirm

NTCrequest

BCindication

BCconfirm

Figure 9: The timing diagram for one con�guration

9



The service times can be derived from these measurements under minimal
load. No queueing will occur under minimal load, so the residence time of a
component will be equal to the service time of that component decreased by
the residence times of the interrogation operations invoked during the service
provisioning and the encountered communication delays:

Tj =
1

Rj �

X

i2K

Ri �

X

i2K

Ci

where Tj is the transition rate of the sub-model of component j, Rj is the
average turnaround time of component j and K is the set of operations invoked
(as an interrogation) by component j. Ri is the average turnaround time of
operation i and Ci the average communication delay to component i.

As an example consider the service time of the ntc in Figure 9. The ser-
vice time of component ntc can be derived from the residence time of ntc
(ntcresponse - ntcindication) minus the residence times of dbc and bc and
the communication delays (di�erences between request and indication and the
di�erences between response and con�rm). In this way service times and com-
munication delays can be derived from the measurements depicted in the dia-
gram. A drawback of this method is that for each combination of components
and system nodes a measurement under minimal load has to be done to ob-
tain the residence time without queueing. A major advantage of this method,
however, is the higher level of abstraction maintained, i.e. the capacities of the
system nodes and the requirements of the components are implicitly incorpo-
rated.

We now discuss some comparative results from the modelling and moni-
toring. The IN/ANSA application has been monitored using di�erent alternative
con�gurations. The performabilitymodel has been parameterized with statistics
(averages) over the measurements, obtained by monitoring the di�erent con�g-
urations under minimal load. This leads to one set of parameters applicable for
all con�gurations. The SPNP (stochastic Petri net package) implementation [3]
of the performability model has been veri�ed with the performability indices
actually measured by the JEWEL monitor under various workloads.

In Table 1 the monitored results for the three di�erent con�gurations are
presented in comparison with the values calculated by SPNP. We see that the
model results, under minimal load, come very close to the values actually mea-
sured. Notice that these results are obtained using a very simple performance
model, only taking into account application components and cpu possession.

Finally, we compare the measured results with the model evaluation results
under higher load. Note that the models parameterization is the same as for the
minimal load case. The con�gurations investigated areM1,M2 andM3. Due to
scheduling strategies of ANSAware the approximations for the turnaround time
of the \internal" components, i.e. ntc, sc, bc and dbc are not comparable

10



Time in ms.
con�g. Monitored SPNP Di�erence

Turnaround time of gc 112 113 +0.9%
M1 Turnaround time of sc 91 88 -3.4%

Turnaround time of ntc sun3 76 73 -4.1%

Turnaround time of gc 157 157 0%
M2 Turnaround time of sc 132 132 0%

Turnaround time of ntc sun2 103 103 0%

Turnaround time of gc 138 135 -2.2%
M3 Turnaround time of sc 115 110 -4.5%

Turnaround time of ntc sun2 106 103 -2.9%
Turnaround time of ntc sun3 73 73 0%

Table 1: Evaluation SPNP model with monitoring results under minimal load
for con�gurations M1, M2 and M3.

to the SPNP results. More important for the performance, however, is the QoS
provided to the user, i.e. the turnaround time of the complete application, which
is equal to the turnaround time of gc. We therefore address this metric.

The results of the SPNP model and the measurements are graphically de-
picted in Figure 10. For each con�guration eight monitoring sessions were con-
ducted for di�erent workloads (�). The results of the SPNP model are rea-
sonably good (less than 10% error) when the load is low to moderate. When
the load increases, however, the monitoring results di�er substantially from the
results calculated by SPNP. The workload range of our interest is the moderate
range were the turnaround time does not exceed the requested QoS. If the QoS
is violated (or the turnaround time has increased signi�cantly) the performa-
bility manager is triggered and runs the Performability Model for alternative
con�gurations. Further research is necessary to estimate the level of con�dence
we can put in our models.

6 ANSAware related topics

In the previous sections the monitoring,modellingand the evaluating ofANSAware
environments has been described. In this section we will focus on the speci�c
ANSAware related topics of these activities.

When monitoring an ANSAware application the RPC mechanism has shown
to be a good framework for instrumentation of the source code. With the four
events identi�ed the major part of the relevant performability indices can be
calculated. The adjustments to the ANSAware source code are few and well

11



0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6

re
sp

on
se

 ti
m

e

workload

SPNP

Monitored

Con�guration M1

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6

re
sp

on
se

 ti
m

e

workload

SPNP

Monitored

Con�guration M2

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6

re
sp

on
se

 ti
m

e

workload

SPNP

Monitored

Con�guration M3

Figure 10: Evaluation SPNP model with monitoring results for con�gurations
M1, M2 and M3.

12



prescribed to perform monitoring with Jewel. A drawback of ANSAware is the
lack of global time, which causes that the communication delays can not be
calculated exactly.

The computational model has been used as a framework to perform per-
formability modelling. The ANSAware computational objects can be described
by stochastic Petri net sub-models. Guided by the con�guration of the objects
and the monitoring results with these sub-models an overall model is composed
and evaluated. The results of these evaluations are reasonably good when work-
load is low to moderate. When the load increases further the turnaround time
of the application increases explosively. This phenomenon can be explained by
the scheduling strategy of ANSAware. The submission and reception of number
translations are both implemented in one capsule (the gc). When the load
increases the submission side of the capsule takes over the cpu possession2 at
expense of the reception side, which causes the increase of the turnaround time.

Another problem encountered during the monitoring of the application was
the implementation of the announcement operations. The announcements seem
to get lost when load increases, even when capsules were running on one machine
and enough tasks and threads were allocated. The solution to this problem
was to simulate announcements with interrogations, using the voucher/redeem
construct3.

Concluding we can state that the ANSAware platform provides a good frame-
work to do performabilitymonitoring and modelling using generic prescriptions.

7 Discussion and future work

In this paper we focused on the monitoring and modelling aspects of ANSAware
environments. We presented an ANSAware-based experimental distributed en-
vironment in which the modelling and evaluation aspects are totally auto-
mated. We proposed a generic modelling strategy in which the structure of the
client/server and the computational model of the ANSAware computing platform
are used. This structure allows for a generic transformation of the computa-
tional models into performability models using prede�ned SPN models.

The PM receives information about the ANSAware-based application from a
distributed monitoring process based on JEWEL and DEMON. With this in-
formation, and the SPN model library of ANSAware applications, the PM auto-
matically constructs an overall SPN performability model which is subsequently
used for the determination of the provided Quality of Service (QoS).

Currently we are working on proper mapping algorithms for the creation of
the alternative con�gurations.

The required on-line and therefore necessarily fast evaluation of the created
SPN models also requires further study. Currently we are experimenting with

2Even when using the statements timer Sleep() or instruct Pause.
3This voucher/redeemmechanism is described in [1].

13



MVA algorithms and the use of closed-form solutions for the SPNs [11].
The monitoring process is realized using two monitoring tools. In a future

environment the use of one monitoring tool is preferred because of the interfer-
ence of the monitoring process with the monitored applications. The current
experience with generic monitoring shows satisfying results which makes it ap-
plicable for further use.

In this paper we mainly addressed pure performance issues. The use of
replicated components and the evaluation of the models w.r.t. performability
measures including dependability aspects, will be subject of further study. We
also intend to use the performability manager as a conceptual framework for
the study of resource control issues in multi-media conferencing systems.

References

[1] Architecture Projects Management Ltd. ANSAware 4.0 application pro-
grammer's manual, March 1992. Document RM.102.00.

[2] R.L. Bennett and G.E. Policello II. Switching Systems in the 21st Century.
IEEE Communications Magazine: Feature Topic: Toward The Global In-
telligent Network, 31(3):24{30, March 1993.

[3] G. Ciardo, J. Muppala, and K. Trivedi. SPNP: Stochastic Petri Net Pack-
age. In in Proc. 3rd Int. Workshop Petri Net and Performance Models,
Kyoto, Japan, pages 142{151. Duke University, Department of Computer
Science, Durham, USA, IEEE Computer Society Press, December 1989.

[4] L.J.N. Franken and B.R.H.M. Haverkort. The Performability Manager.
IEEE Network: The Magazine of Computer Communications Special Issue
on Distributed Systems for Telecommunications, 8(1), Januari 1994.

[5] L.J.N. Franken, R.H. Pijpers, and B.R. Haverkort. Modelling Aspects of
Model Based Dynamic QoS Management by the Performability Manager.
submitted to the 7th International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, May 1994.

[6] J.J. Garrahan, P.A. Russo, K. Kitami, and R. Kung. Intelligent Network
Overview. IEEE Communications Magazine: Feature Topic: Toward The
Global Intelligent Network, 31(3):30{38, March 1993.

[7] B.R. Haverkort and K.S. Trivedi. Speci�cation and Generation of Markov
Reward Models. Discrete-Event Dynamic Systems: Theory and Applica-
tions, 3:219{247, 1993.

[8] H. Korte. Visualising ANSAware Programs with EXP93. Technical report,
PTT Research, the Netherlands, unpublished, June 1993.

14



[9] F. Lange, R. Kroeger, and M. Gergeleit. JEWEL: Design and Implementa-
tion of a Distributed Measurement System. IEEE Transactions on Parallel
and Distributed Systems, 3(6):657{671, November 1992.

[10] MARI Computer Systems Ltd. DEMON V3.0 User's guide and Reference
manual, 1993.

[11] R.H. Pijpers. Performability Monitoring and Modelling of ANSAware En-
vironments. M.Sc. thesis, University of Twente, the Netherlands, December
1993.

[12] Studygroup XI. Q.1200, Draft recommendations. Technical report, CCITT,
1991.

15


